

The 2022 Report on International Perceptions of Gender Barriers in STEM

Outputs and outcomes of the INWES-KWSE 2022 Survey and Study "Gender perceptions In Science and Engineering" (GISE)

Sarah Peers, GISE Project Manager for INWES and KWSE Jung Sun Kim, INWES President Seong Jin Ju, KWSE President

Date of PublicationDecember 2022ISBN 979-11-951557-7-4Copyright © 2022 INWES and KWSE, all rights reserved

©2022 INWES & KWSE

Foreword

In 2021 the Association of Korean Woman Scientists and Engineers (KWSE) and the International Network of Women Engineers and Scientists (INWES) signed an agreement that launched the INWES-KWSE Gender barrier perceptions In Science and Engineering (GISE) project. The work was a continuation and expansion of the valuable surveys carried out by KWSE in Asia and the Pacific Nations from 2014 to 2018. The 2021 project was a pilot study which developed a robust process for the survey that was extended to an international audience. Moreover, a proposed gender index for STEM based on the gender barrier perceptions was a meaningful outcome. This year's report is a continued effort based on the pilot study, which resulted in the completion of the GISE index development, translation of the survey into 7 languages and a culmination of data made available to participating organizations.

The aim of KWSE in 2014 was initially to develop common indices to compare the situation of women in Science, Technology, Engineering and Mathematics (STEM) in countries across Asia and the Pacific islands, as discussed at the INWES Asia and Pacific Nation Network (APNN) meeting in 2011 during ICWES15. After 11 years of collective efforts by INWES and KWSE, this project now offers an international view of STEM. It centers on the ideas underpinning the United Nations' definition of human development: "richness of human life", growth in choices and of course economic empowerment for all (United Nations Development Programme, n.d.).

The approach taken by KWSE and adopted here is novel in the arena of gender studies: we are assessing perceptions of gender barriers and seeking views from individuals working in the sciences and engineering, rather than seeking tallies or comparing numbers of men and women in STEM sectors. This approach is one that the World Economic Forum and Data2X have suggested as pertinent and valuable (World Economic Forum 2021, Data2X 2020).

The GISE Index presented in this report is based on the initial index proposed in the INWES-KWSE 2021 project. In 2022, the original proposal was adapted and modified. The composite index reported in this document is based on a two-factor approach and initial analysis is very promising.

As a collaborative effort of INWES, and acknowledging the inputs from many members of INWES and in particular the early work by the APNN (INWES Asia and Pacific Nations Network) countries, this project is now reaching maturity and we present here a well-tested methodology that is producing extremely valuable data on perceptions of gender barriers in STEM, as well as some results from the 2022 survey.

The longer-term aim of the work of INWES and INWES members such as KWSE is to reduce gender-based job segregation in the STEM sectors, identified as a key issue by many global organizations including UNESCO (UNESCO, 2021). It is hoped that the outputs from this year's survey and data analysis will contribute to identifying barriers, enabling effective action to reduce job segregation and closing the worldwide gender gap in STEM.

A significant outcome of the GISE 2022 project include a tested methodology for perceptions-based gender comparisons in all areas of STEM, including the GISE index, for a continued longitudinal study. It is with great anticipation that GISE studies are further strengthened and play a key role in building a policy road map for the balanced development of future human resources worldwide.

We are most grateful to Dr. Sarah Peers for her passionate contribution in preparing, conducting and leading the GISE project. We are also thankful to our valuable international group of advisors, disseminators and experts from INWES and KWSE. Special acknowledgments to Dr. Byung-Joo Min, Professor Kong-Ju-Bock Lee and Dr. Yanghee Kim who have laid the foundation of the GISE project. And we must acknowledge the scientists and engineers who have given their time to respond to the surveys; without whom this report would not have been possible.

Jugert .

Jung Sun Kim, Ph.D. INWES President 2021-2023

Message from KWSE

Korea's traditional emphasis on education has led to gender equality in terms of academic accomplishment. When we turn our attention to economic activity, however, it quickly becomes clear that we still have a long way to go. According to the WEF's *Global Gender Gap Report* published in 2021, South Korean women's labor participation rate is just 77% that of men. Furthermore, South Korea's wage equality score was 0.574, which is notably smaller than the global average of 0.628. According to Credit Suisse Research Institute's *CS Gender 3000* published in 2019, the percentage of women in senior management positions in Korea (3.1%) is far lower than even the notoriously low global average of 20.3%. Both reports suggest that our society's glass ceiling remains very strong.

Science and technology is mentioned as a crucial component of solutions to crises (e.g. global financial crises, side effects of the Fourth Industrial Revolution, climate change, pandemics) as well as in the building of countries that are resistant to such crises. This is leading to increased interest in cultivating and utilizing female workers in the sciences as a means of combatting the declining economically-active population and falling total fertility rate.

Major countries of the world have carried out programs since the 1980s to support women scientists and engineers under the goal of securing a diverse labor pool in science and technology. In the United States and EU, discussions in the political sphere on providing equal opportunity to men and women are accompanied by the creation of statistical evidence, systemic improvements made via social consensus, and activities to raise social awareness actively undertaken by universities and corporations—all for the effective implementation of gender equality policies.

To strengthen the capabilities of women in and contribute to the advancement of science and technology, South Korea enacted the Act on Fostering and Supporting Women Scientists and Technicians in 2002. The Basic Plan for Fostering and Supporting Women Scientists and Technicians, which is drafted in five-year increments, was established in 2004. Over the course of four Basic Plans, the number of women in science and engineering has increased. We should not forget, however, that this must be accompanied by consistent efforts toward achieving qualitative growth and realizing hidden potential: specifically, by doing away with gender-related prejudices in science and engineering (e.g. gender imbalance, glass ceiling, gender barrier) and replacing such prejudices with a culture of gender equality.

From 2014 through 2018, the Association of Korean Woman Scientists & Engineers and International Network of Women Engineers and Scientists (INWES) conducted international surveys focused on the gender barriers perception in science and engineering in the Asia-Pacific. Based on five years of policy research, the survey's scope was expanded in 2021 and 2022 to include all regions of the world. Focus was placed on quantifying the perception of the gender barrier. Currently, we have completed the basic preparations necessary to derive a GISE (Gender perception In Science and Engineering) index. I hope that our efforts contribute to improving gender gap-related issues in science and engineering at the government policy level.

Finally, I would like to express my gratitude to everyone who worked so tirelessly to help conduct international policy-related initiatives from 2014 to 2022.

2710

Seong Jin Ju, Ph.D. 14th KWSE President

Acknowledgements

Funding and Support

This project is funded by the Ministry of Science and ICT in Korea and directed by KWSE. We are also grateful for the excellent administration and secretariat support from Hyon Jung Jang and Yui Joung Min at KWSE and Sieun Park at Dongseo University.

Advisors and Consultants

In 2022, the project relied on the overview of Advisors from KWSE (the Korean Association of Woman Scientists & Engineers), INWES, and from INWES Regional Networks. Professor Jung Sun Kim, INWES President and member of KWSE, chaired meetings with advisors and Dr. Sook Kyung Kim represented KWSE as their Chair of the International Cooperations Committee. As for 2021, Professor Battsengel Baatar, INWES Vice President of Education & Research was the lead INWES representative for this project.

We also include as valued advisors: Dr. Hye Young Park, a gender specialist from Dongseo University who has worked on past KWSE surveys; Professor Clem Hermann, founder and Editor in Chief of the open access International Journal of Gender Science and Technology, of the Open University, UK; and INWES Deputy President, Nadia Ghazzali, Professor of Statistics at the Université du Québec à Trois-Rivières, Canada.

We were especially grateful to the Country Leads who supported translation and dissemination of the questionnaire in their areas. In particular we wish to acknowledge the work of Professor Seema Singh who was very successful in dissemination; and of Ms. Shun-Lien Sung and TWiST, the INWES member in Taiwan, who carried out the translation of the questionnaire into traditional Chinese. The leads by region or country (or continent) were:

- Aguri Nakano, for Japan
- Belen Garcia de Pablos and Sylvia Kegel, for Europe
- Vicky Kondi Akara, Rufina Dabo Sarr, Mary Mwangi, and Nelly Sakhi Hagan for Africa
- Jung Sun Kim and Hye Young Park, Sook Kyung Kim for South Korea
- Maria Jose Morales and Sylvia Ortega Azurduy, for Latin and South America
- Najla Triki, for Tunisia
- Seema Singh, for India
- Shun-Lien Sung, for Taiwan

Assistant Consultants, Paul Bernard Noah, based in Cameroon, and Ivan Baptista in the UK, provided further support in dissemination during 2022. Merci beaucoup to Paul Bernard for his energy in reaching out successfully to so many groups in central Africa, including UNESCO groups. Ivan provided translations and reached out to some harder to reach groups including Europe: thank you for your support.

Other participants at GISE meetings and webinars provided additional guidance including Fatoumata Bari (UNESCO Congo), Yvonne Matuturu, Cindy Gamassa, Chryspin Afifu, Yetunde Holloway (WFEO, Nigeria), and Dr Evi Viza (University of the West of Scotland). Other supporters in Africa are here also gratefully acknowledged:

Céphas Germain Ewangui	Permanent Secretary	Advisory Council of Civil Society and Non-Governmental Organizations/ Presidency of the Republic of Congo	
Gamassa Cindy Isola	Gender and Inclusion Officer	Congolese Ministry of Posts, Telecommunications and the Digital Economy	
Armand Claude Abanda	Resident Representative	IAI Cameroun / Paul Biya Center of Technological Excellence	
Serah Njenga	Gender & Health Specialist	International Center for Research on Women (ICRW)	
Brusly Clichy Lickiby	National Coordinator	PANCoP Congo	
Sorie Kamara	Executive Director	PAVNET	
Sileshi Sals Umer	Founder and CEO	SafeLight	
Dr Simenew Keskes	Country Representative	STEMpower	
Yvonne Matuturu	Head of Human and Social Sciences Sector	UNESCO Office in Central Africa, Yaoundé	
Fatoumata Barry Marega	UNESCO Head of Office and Representative	UNESCO Office in Congo	
Daouda Koné	Education specialist	UNESCO Office in Côte d'Ivoire	

We also acknowledge the work carried out by Francis Jarry, statistics consultant at Numea, Montreal, Canada, who provided the detailed analysis and statistical support, and was very helpful in providing extensive advice and guidance on the GISE Index. Francis' explanations are included in this report. INWES Treasurer Sylvia Kegel very kindly provided IT support. Dr Sarah Peers provided overall project management at INWES.

Summary

The Association of Korean Woman Scientists & Engineers (KWSE) in collaboration with International Network of Women Engineers and Scientists (INWES) ran the pilot project for the GISE International survey in 2021, building on KWSE's surveys from 2014 to 2018.

In 2022, the GISE project focused on:

- seeking to reduce the barriers to dissemination to harder to reach areas, which include countries in Africa.
- further work on the GISE Index to solidify the foundation set and proposed in 2021.

About the 2022 Project and Survey

The project ran from February to November 2022. The purpose of the survey is

- to continue to gather statistical data on gender perceptions in the STEM fields by country, gender, and age.
- to provide a robust methodology for a continued longitudinal study on gender in STEM.
- and to play a key role in building a policy road map for the balanced development of future human resources worldwide.

The key outputs from this year's project include

- a survey based on past KWSE questionnaires for multiple languages that will be made available to INWES members to make their own analyses.
- GISE index developed to act as an indicator of the progress towards gender equity in STEM.
- survey questionnaires translated to two new languages: Chinese (Traditional Mandarin) and Portuguese to add to the existing versions in Korean, French, Spanish, Japanese and English, making 7 language versions available.
- significant difference of gender barrier perceptions between women and men has been revealed.
- multiple dissemination events, particularly in Africa, to raise the visibility of the issues of gender barriers and of the GISE project.
- strengthened visibility of GISE with UNESCO.
- as open access policy set up for GISE data to INWES members and partners.

The questionnaire for the survey asks respondents for their views on gender barriers in STEM education, research and the work environment. In 2022, the survey was disseminated across the world, targeting all genders of working age, and all STEM specialisms.

An overview of the survey in numbers is shown below.

* By the closing date of the survey, which was set to allow analysis to take place, just under 2200 responses had been received. Of these just under 280 were not completed or were from respondents who did not fit the criteria of the survey or contained several inconsistencies. After the official closing date, a further 676 responses were received, mainly from Africa. These were not included in the main phase of data analysis. Of the 676, 515 were considered for some limited secondary analysis specific to Africa and results are also included in this report. All data is being kept for future analyses, including longitudinal comparisons.

The GISE index for the 2022 study are:

Country/ Region	GISE INDEX	Factor 1 (Absolute) Index	Factor 2 (Comparative) Index
Africa	0.00	0.00	0.00
India	0.16	0.14	0.16
Taiwan	0.42	0.45	0.32
Japan	0.70	0.72	0.56
European Union	0.73	0.95	0.33
Rest of the World (as a comparison)	0.81	0.79	0.70
South Korea	0.87	0.65	1.00
South America	1.00	1.00	0.83

* Index of 1.00 means low perception of gender barriers and 0.00 means highest perception of gender barriers

Table of Contents

Foreword	i
Message from KWSE	iii
Acknowledgements	v
Funding and Support	v
Advisors and Consultants	v
Summary	vii
About the 2022 Project and Survey	vii
Introduction	1
Measuring Gender Equality in STEM	2
The 2022 KWSE-INWES Global Survey on Perceptions of Gender Barriers in areas of STEM	all 4
The process, ethics & confidentiality, and timelines	4
Meetings and consultation	5
The questionnaire	6
A note on Sections C (Direct Experience of Gender Barriers) and D (Indirect Experience):	8
Regionally specific questions and language issues	14
Dissemination and promotion and information	15
Results of the 2022 Survey	21
Actual country and regions	21
Summary Tables of Data	22
Analyses carried out	23
Interesting results and interpretations	25
Does "The global war of the sexes" continue in 2022?	26
Results from other comparisons	31
Countries grouped by human development & gender equity indices (HDI/GII)	37
Focus on Africa	37
Other considerations and issues:	38
Assumptions and biases	38
Confounding variables not yet included in analyses	40

Sample sizing		
"A tool for change" - the	GISE Index	
Addressing concerns an	rising from initial analyses	
Factor 1: Absolute view	WS	
Factor 2: Comparative	views	
The implemented proce	ess and solutions	44
An example calculation	n	
Summary GISE Index	results for the 2022 Survey	
Next steps and summar	ry	
Opening access to GISE I	Data and Collaboration	
A policy for access to 0	GISE Data	
A GISE STEM commu	nity in Africa	49
Further activities to sha	are GISE outputs and outcomes	49
Conclusions and Suggestio	ons	50
Key results and outcomes	3	
Next steps and suggestion	ns for future projects	
References		
References		52
References APPENDICES Appendix A: Additional I	Information	52
References APPENDICES Appendix A: Additional I A-1. Sample email	Information	
References APPENDICES Appendix A: Additional I A-1. Sample email A-2. The Questionnaire	Information	
References APPENDICES Appendix A: Additional I A-1. Sample email A-2. The Questionnaire English Version	Information	
References APPENDICES Appendix A: Additional I A-1. Sample email A-2. The Questionnaire English Version A-3. Glossary	Information	52 55 55 57 57 81
References APPENDICES Appendix A: Additional I A-1. Sample email A-2. The Questionnaire English Version A-3. Glossary A-4. Report from Assista	Information nt Consultant in Africa	52 55 55 55 57 57 81 82
References APPENDICES Appendix A: Additional I A-1. Sample email A-2. The Questionnaire English Version A-3. Glossary A-4. Report from Assista A-5. GISE Lists including	Information nt Consultant in Africa g Categories for Reference	52 55 55 55 57 57 57 81 82 98
References APPENDICES Appendix A: Additional I A-1. Sample email A-2. The Questionnaire English Version A-3. Glossary A-4. Report from Assista A-5. GISE Lists including Full country list	Information nt Consultant in Africa g Categories for Reference	52 55 55 55 57 57 57 81 82 98 98 98
References	Information nt Consultant in Africa g Categories for Reference	52 55 55 55 57 57 57 57 57 81 81 82 98 98 98 107
References	Information nt Consultant in Africa g Categories for Reference ata tatistical Comparisons	52 55 55 55 57 57 57 57 57 81 81 82 98 98 98 107 108
References APPENDICES Appendix A: Additional I A-1. Sample email A-2. The Questionnaire English Version A-3. Glossary A-4. Report from Assista A-5. GISE Lists including Full country list Summary of Survey Da Appendix B: Detailed St B-1. By Gender	Information nt Consultant in Africa g Categories for Reference ata tatistical Comparisons	52 55 55 55 57 57 57 81 81 82 98 98 98 107 108 108
References	Information nt Consultant in Africa g Categories for Reference ata tatistical Comparisons	52 55 55 55 57 57 57 81 82 98 98 98 98 107 108 108 109
References	Information nt Consultant in Africa g Categories for Reference ata tatistical Comparisons - women vs. men vs. men	52 55 55 55 57 57 57 57 81 82 98 98 98 98 107 108 108 109 108
References	Information Information nt Consultant in Africa g Categories for Reference ata tatistical Comparisons - women vs. men vs. men ot include late responses) - women vs. men	52 55 55 55 57 57 57 57 57 81 82 98 98 98 98 98 107 108 108 109 110 111

India - women vs. men
Japan - women vs. men
Europe - women vs. men
South America - women vs. men
Taiwan - women vs. men
B-2. By STEM Sector
Global - Overall comparison
Global comparisons (continued):
South Korea – Overall comparisons
Africa – Overall comparisons (without late responses) 121
India – Overall comparisons
Japan – Overall comparisons
Europe – Overall comparisons
South America – Overall comparisons 125
Taiwan – Overall comparisons
B-3. Global - Multiple comparisons
South Korea – Multiple comparisons
Africa – Multiple comparisons
India - Multiple comparisons129
Taiwan – Multiple Comparisons
B-4. By STEM X Gender
Agriculture - women vs men global comparison
Engineering - women vs men global comparison
Medicine - women vs men global comparison
Mathematics - women vs men global comparison
Natural Sciences - women vs men global comparison
Other Technologies - women vs men global comparison
Social Sciences - women vs men global comparison137
B-5. By Countries/Regions
South Korea vs. all other regions
Africa (without late responses) vs. all other regions
India vs. all other regions141

©2022 INWES & KWSE

Japan vs. all other regions
Taiwan vs. all other regions
Europe vs. all other regions
South America vs. all other regions
B-6. By STEM Experience & Considering leaving STEM146
Three-way comparison for STEM Experience147
Early career X Gender148
Midcareer X Gender149
Seniors X Gender
Gender X Considering leaving STEM151
B-7. By global indices (HDI and GII)
Across HDI Groups - overall
Across GII Groups - overall154
Across HDI Groups - comparative
Across GII Groups - comparative
B-8. Focus on Africa158
African men vs all other men (without late responses)159
African women vs all other women (without late responses)160
English-speaking vs French-speaking Africa (including late responses)161
Appendix C: Calculating the GISE Index162
The intermediate calculations
Dictionary
Notes on exceptions
Appendix D: Further notes on Statistical Results
Statements in full
STEM Clusters by Letter Codes
List of respondent countries

Table

Table 1: STEM specializations and STEM Clusters for GISE	7
Table 2: Subtables of Survey Questions on Gender Barriers and Coding for Gen	der
Equality	8
Table 3: GISE Questionnaire Versions - Languages and region-specific questions	. 14
Table 4: Groups and Networks who disseminated to their own members	. 17
Table 5: Targets and Numbers Achieved	. 22
Table 6: Breakdown of analyzed responses by Gender X Region/Country	. 22
Table 7: Breakdown of analyzed responses by STEM Cluster X Region/Country	. 23
Table 8: List of Statistical Comparisons Conducted	. 24
Table 9: Notable highlights of differences by Gender	. 29
Table 10: Other notable results from comparisons	. 32
Table 11: GISE Index results	. 47

Figure

Figure 1: Example slides used in dissemination	
Figure 2: Photographs and posters for dissemination activities in Bolivia,	Sierra Leone,
Republic of Korea, and Congo-Brazzaville	
Figure 3: World Map indicating reach of the GISE Survey	21
Figure 4: Snapshot of results for the Global War of the Sexes	
Figure 5: The 2022 GISE Index based on two factors	

GISE Report 2022

©2022 INWES & KWSE

Introduction

The United Nations continues to highlight the gender gaps in science, technology, engineering, and mathematics (STEM) and makes explicit mention of this in the Gender Snapshots publication for 2022:

"Women hold only 2 in every 10 science, engineering and information and communication technology jobs globally" and "Steered away from STEM, girls miss opportunities in tech and innovation" (UN Women and DESA, 2022).

It is still a major concern to many that women still do not take full part in all areas of science and engineering. The concerns have increased in this post-Covid world: the global Human Development Index (HDI) decreased (UNDP, 2022) and women have been most affected as they are over-represented in the sectors most impacted during the pandemic, and by the closure of schools and childcare facilities. In addition, in many regions, women in research and innovation, particularly in science and the digital technologies, have found inflexible workplaces combined with increased family and caring responsibilities have had a negative impact on their ability to be as productive. Post pandemic, this may lead to a widening gap in the career progression of women compared to men in STEM.

The purpose of the Gender perceptions In Science and Engineering Project (GISE) in 2022 is to:

- to continue to gather statistical data on gender perceptions in the STEM fields by country, gender, and age.
- to provide a robust methodology for a continued longitudinal study on gender in STEM.
- and to play a key role in building a policy road map for the balanced development of future human resources worldwide.

This longitudinal approach may potentially also offer a view of whether women in STEM feel they have been further disadvantaged as compared to previous years.

The project had a requirement to reach at least 15 countries from around the world, with a request to focus on reaching a wider audience in Africa, and a target of 1500 responses.

The GISE 2022 project continues the work carried out by the Association of Korean Woman Scientists and Engineers (KWSE), initially in South Korea and then across several Asian countries, followed by the project run by KWSE in collaboration with INWES:

- The 2021 Report on International Perceptions of Gender Barriers in STEM -Outputs and outcomes of the INWES-KWSE pilot survey "Gender perceptions in Science and Engineering" (GISE) (Kim & Peers, 2021)
- The 2014, 2016 and 2018 Policy Reports on Balanced Development of Human Resources for the Future (summarized in (Kim & Park, 2019))
- The Glass Ceiling for Asian Women in STEM (KWSE, 2015)

The series of surveys from 2014 to 2021 has provided much valuable information and data on perceptions of gender barriers in STEM. Reports on the 2021 GISE project can be found on the INWES Resources page (https://www.inwes.org/reports/), as well as on KWSE's own website (https://www.kwse.org/information/brocherReport) which also houses the reports up to 2021.

Gender inequality is not just an issue of individual rights and freedom. Many commentators, researchers and the United Nations have linked women's economic empowerment to social improvement and sustainability. In business, gender equality and reduced job-segregation leads to higher levels of innovation. As noted in the Gender Snapshots report for 2022, it is estimated that by not having women taking part in the digital technologies, there is a huge loss to the global economy and to innovation.

Data2X has commented on the data gaps for measuring women's economic empowerment, including subjective measures of "empowerment", beliefs, experiences, and self-reported metrics, and the World Bank makes use of perception data to assess availability of engineers and scientists (Data2X, 2020; Buvinic, 2017; World Bank, 2017). The approach in the GISE project to consider individual's perceptions of the barriers they experience or that they see others face is novel to gender data in STEM and addresses the data gaps noted by Data2X.

Measuring Gender Equality in STEM

As noted in the 2021 report, there are many measures and indices for gender equality in existence: such as the Gender Development Index (GDI) related to the Human Development Index (HDI), and the Gender Inequality Index (GII) (United Nations, 2021 & 2022). These, although useful, do not provide a metric for gender in STEM. The gender equality scorecards reportedly being proposed for science and engineering (Holloway, 2021), and the UN SAGA Toolkit and Indicator Matrix (UNESCO, 2017) are also valuable for policy making at the highest levels, but they may also be cumbersome for general use.

The European Commission data on women in research and innovation is useful – for Europe and for academia – but does not pretend to include women in STEM in industry (European Commission, 2021). But globally the data gaps for women participating in STEM are real: the World Bank calls for more sex-disaggregated data for STEM, and

GISE Report 2022

comments on the issues of a lack of common agreement of what STEM is (World Bank, 2020). In this project, we have taken STEM to include the broadest interpretation to reduce the numbers of gaps in categories of STEM.

One of the hoped-for outcomes from the extended surveys by KWSE was to identify a metric that would measure gender equality in STEM as perceived by the scientists or engineers themselves. A so-called *composite index*, which encapsulates many variables and metrics in one, would provide an easy reference point to highlight if a country, region or even STEM sector is progressing towards gender equality. Such an index could be included in international toolkits, for example, the Composite Indicators & Scoreboards Explorer (europa.eu) (available at https://composite-indicators.jrc.ec.europa.eu/).

The GISE Index first proposed in 2021 was the first step in creating such an index. It has undergone some development and a more complete GISE Index is presented here. Initial data analysis is promising.

The 2022 KWSE-INWES Global Survey on Perceptions of Gender Barriers in all areas of STEM

The purpose of this survey is to evaluate how scientists and engineers across the world perceive "gender barriers" experienced by women in STEM. The term "gender barriers" is used in this study to describe the hurdles and obstacles women in STEM experience in their educational and professional lives because of their biological and social identity as women.

The survey was open to all who:

- aged 18 or more and still working.
- was studying/working or had studied/worked in STEM.

Responses from all areas of STEM, from all over the world, and from all genders were welcomed. This is the first truly global survey carried out on individual's perceptions of gender barriers in STEM.

As for 2021, where respondents were not sure about their STEM specialism, they were encouraged to submit a response with an explanation of their specialism.

The process, ethics & confidentiality, and timelines

The process followed in 2022 included the following:

- 1. Adapt the 2021 questionnaire where necessary, including referring to regional leads and requests for additional region-specific questions
- 2. Manage translations of the questionnaire into more languages, including Chinese (traditional Mandarin) and Portuguese
- 3. Confirm same approach to **ethics and confidentiality** as for 2021 (refer to the 2021 report) which address the strict requirements of the European Union which are stricter than those of Canada and the rest of the world (European Commission, 2018; Kardash & Kossaim, 2018; European Union, n.d.; Office of the Privacy Commissioner of Canada)
- 4. Seek and recruit an assistant consultant for Africa
- 5. Conduct survey through dissemination amongst INWES members and to extended groups in Africa through the assistant consultant.
- 6. Coding and cleaning up of data
- 7. Statistical analyses comparing by country and/ or by continent
- 8. Draft technical report
- 9. Publishing and disseminate of this report

This final printed report will be posted on the homepages of KWSE and INWES. Reports will also be distributed to members and related organizations including UNESCO, and UN ECOSOC. We will be sharing this final report and summary to all senior contacts in Africa approached during promotion and dissemination of this project.

Meetings and consultation

As noted in the 2021 report, the most productive meetings were the smaller and 1-1 meetings with advisors and stakeholders. In 2022, we focused on those smaller meetings to add value to the process.

Meetings were held with KWSE representatives, consultants, advisors and country representatives:

- 25 February Opening meeting for the 2022 project, Setting timelines and expectations.
- 20 April Meeting with GISE advisors and country representatives, including guests from Africa. Promotion of GISE to extended groups in Africa.
- Through April and May Informal meetings with volunteer translators to update questionnaires. This included a meeting with INWES member TWiST (Taiwan Women in Science & Technology) to discuss support provided for professional translation into Chinese Mandarin for Taiwan.
- 4, 11 May Meetings with Latin American representatives, to explore requirements for additional region-specific Section A questions.
- Through May Supporting INWES webinars and dissemination of GISE through these webinars.
- 5, 11, 15 July Explorative discussions with Africa consultants on reaching relevant groups and networks in Africa including action plans.
- 19 July Meeting with representatives of INWES Africa Regional Network (ARN) and Middle East and Northern Africa (MENA), and the consultant in Africa, to discuss plans for dissemination, including social media and press conferences in Central Africa.
- Through July Informal meetings with country representatives to note any issues.
- 30 August Meeting with statistics team (Numea team) to define timelines and outline requirements.
- 30 August Meeting with INWES Africa Regional Network update on survey responses and exploring future events. Conference in Africa proposed; funding proposal to be developed with INWES African Regional Network committee supported by the consultant in Africa.
- 30 September Meeting with the data analyst at Numea to confirm details of analysis requirements.

- 1 October Meetings with consultants to update on data and issues. Decision made to extend for another 10 days and possibly longer the closing dates to allow late responses from new supporters across Africa including UNESCO groups.
- Through October Informal meetings with ARN committee members and the consultant regarding a possible conference. A new proposal adopted to include GISE sessions in existing ARN events planned for 2023.
- 26 October Progress and Next Steps Meeting with KWSE and GISE advisors.
- 9 November Update and progress of initial set of data analysis results meeting with Numea data analyst.
- 24 November Initial analysis results interpretation and discussion meeting with Numea data analyst. Discussion included the design of GISE Index.
- November Closing meetings with consultants.
- The late responses received from Africa were analyzed in a secondary phase in early 2023.

In addition, periodic meetings were held with the INWES President, and discussions held at INWES quarterly Board Meetings.

The questionnaire

The questionnaire was kept as close to the 2021 GISE questionnaire as practically possible. The main changes related to Section A are regarding personal information as well as circumstances (the *confounding variables*).

For 2022 there was work on defining countries or regions and STEM specialisms. Additional questions to assess the career stage of the respondent were also added as well as a new question on whether they considered leaving STEM.

The list of countries included in the questionnaire was based on the UN list of member states (refer to <u>https://www.un.org/en/about-us/member-states</u>) but made use of a practical list of the countries in English alphabetical order: <u>https://www.listofcountriesoftheworld.com/</u>.

The list of STEM sectors or specializations was based on the UN SAGA STEM classifications. This was adapted to include all areas of STEM in industry. This list was used as a menu of options for both subjects studied and current sector/specialization. In the cleaning of the response data, it was noted that not everyone understood the classifications and some adaptation of responses was needed.

For ease of coding, the STEM Clusters were assigned letter codes as shown in Table 1 (NB. these were automatically assigned by the statistical analysis software in alphabetical order of STEM Cluster name).

		STEM Specialisms	STEM Cluster Name	Letter Code
	1	Mathematics and statistics	Maths/Numerical Sciences	d
	2	Computer and information sciences (including software design & development)	Maths/Numerical Sciences	
	3	Other numerical sciences	Maths/Numerical Sciences	d
	4	Physical sciences	Natural Sciences	e
	5	Chemical sciences	Natural Sciences	e
	6	Earth and related environmental sciences	Natural Sciences	e
	7	Biological sciences	Natural Sciences	e
	8	Other natural sciences	Natural Sciences	e
	9	Civil engineering (including construction)	Engineering	b
	10	Electrical engineering, electronic engineering, information engineering, telecommunications	Engineering	b
	11	Mechanical engineering, (including rail, aerospace, industrial)	Engineering	b
	12	Chemical engineering	Engineering	b
	13	Materials engineering	Engineering	b
	14	Medical engineering	Engineering	b
	15	Environmental engineering	Engineering	b
	16	Environmental biotechnology Other Tech and Architectural		f
	17	Industrial biotechnology	Other Tech and Architectural	f
18Nano19Arch		Nano-technology	Other Tech and Architectural	f
		Architecture and town planning	Other Tech and Architectural	f
	20	Other engineering and technology	Other Tech and Architectural	f
	21	Basic medicine, pharmacy	Medicine and Health	с
	22	Clinical medicine	Medicine and Health	с
23 24		Health sciences, nursing, healthcare	Medicine and Health	с
		Medical biotechnology	Medicine and Health	с
	25	Other medical science	Medicine and Health	с
	26	Agriculture, forestry, and fisheries, (including agricultural engineering)	Agricultural, Animal	а
	27	Animal and dairy science	Agricultural, Animal	a
	28	Agricultural biotechnology	Agricultural, Animal	а
	29	Other agricultural sciences	Agricultural, Animal	a
	30	Psychology and cognitive sciences	Social Sciences, Psychology, Economics	g
	31	Economics and business science	Social Sciences, Psychology, Economics	g
	32	Other social sciences (including recruitment in STEM, education, research administration)	Social Sciences, Psychology, Economics	g
	33	Other field of STEM	Other Tech and Architectural	f
	34	Other field not in STEM		

Table 1: STEM specializations and STEM Clusters for GISE

The key questions on perceptions of gender barriers (Sections B-H) are described in Table 2 (subdivided into 5 tables 2.1 to 2.5) together with the required interpretation of responses for the GISE Index. Responses were on the Likert Scale (1-5) to assess the degree to which the respondent agreed or disagreed with the statement/ confirmed the experience or did not have that experience as in the statement.

- For Sections B, E, F, G and H: 1 = Strong agreement with the statement and 5 = Strong disagreement.
- For Sections C and D, 1 = Never seen /Never experienced, and 5 = Experienced myself/ Witnessed someone experience this.

A note on Sections C (Direct Experience of Gender Barriers) and D (Indirect Experience):

In 2021, there was no attempt to compare responses to sections C and D when all genders were included in the analysis: as men responded to Section D and women (and all non-binary) to Section C, it was felt that it would not be possible to compare.

This year it was noted that the two sections are "mirror images" since the statements in section D are the statements in C but rephrased for indirect experiences. An attempt has been made this year to compare responses to Section C for women against the corresponding responses to Section D for men. In Table 2-2, C/D represents the two statements combined: where gender has been given as female (or non-binary and tending towards experiences that are like women's) the response is as given to Section C. Similarly, where gender was given as male, then the response is as given to Section D.

Table 2: Subtables of Survey Questions on Gender Barriers and Coding for GenderEquality

*In the subtables overleaf, **Indicator of GE** column shows either 1 or 5. For statements with indicator of GE as 1, 1 is most gender equal while 5 is least gender equal. For those with indicator of GE as 5, 5 is most gender equal while 1 is least gender equal.

Table 2-1: Survey Questions on Gender Barriers and Coding for Gender Equality
for section B

Coding for Gender Equality (GE)	nder Equality (GE) FACTORS			
Statements	Indicator of GE*	Indicator of Potential for GE	Further notes	
B1 Girls and boys are equally encouraged to choose any major/field of study in STEM during their education period.	1		Section B: It may be that if there is gender agreement for each of these then there is high or potential for	
B2 Female students in STEM receive equally fair assessments and appraisals for their work, task, or project results, compared to their male counterparts in the same programs and levels.	1		gender equality. In the GISE Index calculations however, we took Section B to indicate GE.	
B3 Women in STEM receive equal work distribution and work appraisals compared to men of the same qualifications and level.	1		Further, we should check to see if men respond more negatively to these statements, i.e., with 4 or 5,	
B4 It is equally difficult for a woman as for a man to get a job in the STEM field with the same qualifications.	1		compared to women! This will remove the bias that has been introduced (refer to subsection Assumption	
B5 Being promoted or becoming a tenured professor or a principal investigator is equally difficult for women in STEM as for men in STEM.	1		and biases below).	
B6 Women in STEM generally receive equal pay for equal work, compared with their equally qualified male colleagues.	1		FUTURE: In countries/regions where there is data, we may compare actual gender pay gaps in the STEM sectors with the responses to this question.	

Table 2-2: Survey Questions on Gender Barriers and Coding for Gender Equalityfor section CD

Coding for Gender Equality (GE)	FACTORS			
Statements	Indicator of GE*	Indicator of Potential for GE	Further notes	
CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	1	If M&F agree: potential for GE	If men (M) do not see women (F) experience barriers, is that because	
CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.	1	If M&F agree: potential for GE	they don't recognize sexist barriers? Or because those events have truly not occurred?	
CD3 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc).	1	If M&F agree: potential for GE	For section C/D: If there is gender agreement for each of these then there is high	
CD4 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their senior classmate, lab-mate or professor (in university laboratory or project group, etc), or senior colleagues or managers at work.	1	If M&F agree: potential for GE	or potential for future gender equality; and conversely, if men and women give different responses here, then there is gender inequality. (And as for Section B, a check should be made to see if	
CD5 Women in STEM being disadvantaged in accessing research/work equipment or information because she is female.	1	If M&F agree: potential for GE	than women, i.e., if they see more barriers for	
CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.	1	If M&F agree: potential for GE	themselves.)	

Table 2-3: Survey Questions on Gender Barriers and Coding for Gender Equality
for section E & F

Coding for Gender Equality (GE)	FAC	FORS	
Statements	Indicator of GE*	Indicator of Potential for GE	Further notes
E1 I believe things will turn out fine in the future career for women in STEM.	1		This question appears to be absolute: 1 implies both that the future for GE in STEM is secure and that there is a place for women in STEM.
E2 It is crucial to have strong policy support to solve gender inequality in the STEM field.	-	If M&F agree: potential for GE	If respondents do not believe policies or quotas are needed, is that because
E3 It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field	-	If M&F agree: potential for GE	there is gender equality? Or because they do not recognize the need for gender equality
F1 In a relative sense, men are rational while women are emotional, and thus they ought to complement each other by carrying out roles that are appropriate for their gender.	5		Section F is a strong indicator of expectations for GE in a region. It could be argued that if women
F2 Primary breadwinners (who take care of financial obligations) of households should be men.	5		believe in gender roles, then there is little gender equality in that area.
F3 Women are born to be, or naturally able to care for children in a way that men are just not as capable.	5		Strong disagreement here, on the other hand, would correspond to strong
F4 In order to maintain the order and peace of a family, the husband should have greater power and authority than the wife.	5		disagreement with statement B1, say, in that those who perceive inequality in how boys and girls are treated in STEM
F5 I believe gender equality will be fully achieved only if women are given equal opportunities as men.	-		are also likely to disagree with gender roles. ¹

¹ We acknowledge here the impact of the statistical analysis that indicated a positive correlation between responses to section F and Section B.

Table 2-4: Survey Questions on Gender Barriers and Coding for Gender Equalityfor section G

Coding for Gender Equality (GE)	FACTORS		
Statements	Indicator of GE*	Indicator of Potential for GE	Further notes
G1 Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work.	1	If M&F agree: potential for GE	
G2 Women equally receive the appraisal or award for the outcome of their project or research or work.	1	If M&F agree: potential for GE	
G3 The strictness, objectiveness and importance of the research or task outcome are equally respected regardless of the sex/gender of the person in charge.	1	If M&F agree: potential for GE	
G4 Dealing with funders (those providing funding for research projects or those providing the budget for a work project), in terms of administrative or budget process, is equally fair regardless of the gender/sex of applicant or project leader.	1	If M&F agree: potential for GE	If both men and women see gender inequality (i.e. respond with 3 to 5) but they agree on levels of inequality, then there is a strong potential for future
G5 Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)	1	If M&F agree: potential for GE	gender equanty.
G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.	1	If M&F agree: potential for GE	
G7 Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female.	5	If M&F agree: potential for GE	

Table2-5: Survey Questions on Gender Barriers and Coding for Gender Equality
for section H

Coding for Gender Equality (GE)	FAC	TORS	
Statements	Indicator of GE*	Indicator of Potential for GE	Further notes
H1 On balance, my STEM career has progressed well so far.	If M and F respond similarly		It can be argued that our belief for why our own STEM career has not
H2 I am considered by colleagues to be either a leader in STEM, or on track for leadership.	If M and F respond similarly		progressed, or whether any one of us are considered leaders, might have nothing to do with gender equality. But if the samples of men and women agree on how their career is progressing, this means they are experiencing the same and this implies GE.
H3 I have not been personally affected by gender barriers in STEM.	For F, 1		If there is gender agreement for each of these then there is high gender equality, and
H4 My family /partner /friends are, on the whole, supportive of my STEM career.	For F, 1		 Is high gender equality, and conversely, if men and women give different responses here, then there is high gender inequality (assuming men have responded positively, i.e. with 1 or 2, and women have responded with a 4 or 5). It would be interesting to check if men responded negatively, i.e., 4 or 5, to H3-5, meaning men feel more disadvantaged than women.
H5 My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment.	For F, 1		

Regionally specific questions and language issues

This year, seven versions of the questionnaire were disseminated in different languages identified to reach out to key parts of the world (Table 3).

While finalizing the questionnaire, it was noted that there was the possibility of confusion with the long lists of countries used to identify origins and current place of residence or work of the respondent. The countries were listed in alphabetical order in English and numbered. When translated, the countries were still listed by number order which meant that they were no longer in alphabetical order in the translated language. There were some concerns about this, and it is proposed that in future long lists, such as country lists, are always ordered alphabetically, but keeping a numeric code to enable easier decoding of responses.

Language	Principally disseminated in	Comments on variations
English	All countries	Complete questionnaire with all variations. For India, additional questions include caste and religion, as is usual in Indian surveys.
Korean	South Korea	Additional questions requested information on where in Korea the respondent was based.
French	French-speaking Africa, Europe	Included extended questions on family circumstances for African Regional Network respondents.
Japanese	Japan	No additional questions.
Spanish	Latin America, Europe	For Europe: additional questions on disabilities and ethnicity as is usual in European surveys. For Latin America: questions on length of time in training, level of university education.
Chinese	Taiwan	No additional questions.
Portuguese	Europe and Africa (NB no responses to this version)	No additional questions.

Table 3: GISE Questionnaire Versions - Languages and region-specific questions

As the questionnaire was to be distributed further into South America in 2022, the Latin American group requested some additional data be gathered on respondents from the region including:

- Length of time that the respondent took to complete their university studies: In many South American countries, students can postpone and take breaks from their studies. It is suspected that women are less likely to be supported financially and practically by their families etc. during their studies, hence may take longer to complete their degree programs.
- If the respondent has a doctorate, the region where they obtained their doctorate: It is quite usual for Latin Americans to travel to other Spanish speaking countries or Canada and the US to complete higher studies. In addition, knowing if the respondent has a doctorate will allow estimations of the percentages of women versus men with doctorates.
- Whether or not the respondent has a decision-making post in government or is a teacher: This will allow future analysis to consider the gaps in leadership and if women are more likely to become teachers.

Dissemination and promotion and information

The webpage set up in 2021 on the INWES website continued in 2022 to provide a central point of information on the project: <u>www.inwes.org/gise</u>. As for 2021, the questionnaire was distributed online using Google Forms (Figure 1).

Figure 1: Example slides used in dissemination

The questionnaire was again distributed by INWES volunteers, to INWES membership in the INWES Regional Networks. Contacts were strongly encouraged to extend the invitation to take part to networks outside INWES. In addition, the consultants for Africa and for Europe carried out much more work to reach groups not associated in any way with INWES and KWSE.

The GISE survey and project was promoted and disseminated at multiple events both hosted by INWES and by others. The following are some of the key events:

- INWES series of webinars "Reimagining STEM Research Cultures": eight webinars were held from April to June 2022 for four regions: Africa, Latin America, Europe and Asia and the Pacific Nations. The GISE project and a call to complete the survey was presented at each webinar.
- A presentation on the GISE project "Perception of Gender barriers In Science & Engineering an ongoing study" was given by the GISE Project Manager at the 6th Gender & STEM Network conference, 21-23 July, Munich, Germany. https://www.unibw.de/gst2022-en
- A presentation of the GISE project was also presented at the 20th Anniversary of INWES Webinar, July 2022.
- Multiple meetings with contacts of African STEM organizations throughout July, August and September.
- Information session with EduClick association in Cameroon, 3 August.
- A short series of seminars on GISE "Challenges Women and Girls face in STEM Career Development", with Pan African Volunteers Network (PAVNET), Sierra Leone, 11-13 August.
- Space4 Women Expert Meeting in Daejeon, 19 August: a presentation by the INWES President entitled "What women's networks can do to close the gender gap" included a description of the GISE project. <u>https://space4women.unoosa.org/news/what-happened-2022-space4womenexpert-meeting</u>
- An information and discussion session with Cameroonian Leadership Academy, including many engineers, doctors and scientists, 19-21 August in Kribi.
- Press release televised in Cameroon and Central Africa by Direct CTV Afrique-Bastos, 16 September, with the participation of Ministries in Cameroon of Posts and Telecommunications, of Youth, and of External Relations, the women's coordinator of the internet governance forum, and the association of Women Computer Scientists of Cameroon. It was also transmitted through Facebook: <u>https://www.facebook.com/ctvafrique/videos/590109286149266/</u>
- Events with UNESCO groups in Africa including Congo-Brazzaville, Cameroon-Gabon and Equatorial Guinea, held September-October 2022.
- GISE Webinar: "Gender Data for Science & Engineering: addressing the gaps for a better world", 1:15 hours webinar at 12noon UTC, 8th December 2022. Speakers included Katja Iversen, past president of Women Deliver, and representatives from UNESCO and Africa. This was transmitted on INWES Global YouTube channel.

Future dissemination is also planned to share the results of GISE Survey 2022. In addition, there have been links made to the US Support for Economic Growth in Asia (US-SEGA)

program (see <u>https://pdf.usaid.gov/pdf_docs/PA00ZDSZ.pdf</u>) who are looking to share the GISE process as an example of good practice to their networks.

Dissemination also occurred through the usual INWES communications channels, i.e., news items on the website, social media, and newsletter, and through the @INWES_Global and @INWES_Europe Twitter accounts, etc.

Through the efforts of our consultants and volunteers, other national and international external organizations also shared the survey, and these are listed in Table 4.

The survey was also shared on multiple social media groups for networks of women in STEM (e.g., Women In Mathematics – a US based Facebook Group), LinkedIn professional groups (e.g. EDI in STEMM). Personal contacts reached the World Health Organization and UN groups outside Africa. Figure 2 shows photographs of promotion and dissemination of the GISE 2021 report and 2022 questionnaires in Bolivia, Korea, Sierra Leone and Congo-Brazzaville.

Country/Region	Organization	Notes
Cameroon, Africa	ACAFEI - L'association camerounaise des Femmes Informaticiennes (the Cameroonian Association of Women in IT)	Women in STEM network for young women in IT.
Africa	African Union	Pan-African organization set up to encourage solidarity between all member states. <u>https://au.int/</u> Shared with local contacts.
Africa	African Women Leaders Network (AWLN)	Network set up as an African Union Commission initiative. <u>www.awlnafrica.net</u>
Côte d'Ivoire, Africa	AmazoOn du Web	Computer training school for women and girls. <u>https://www.facebook.com/lesamazo</u> <u>on</u>
Côte d'Ivoire, Africa	Centre MARée de LUmière	Non-profit organization training young girls, children, and people from disadvantaged social classes in digital professions. <u>https://www.facebook.com/CentreM</u> <u>AReedeLUmiere/</u>

Table 4: Groups and Networks who disseminated to their own members

Table 4 cont'd

Country/Region	Organization	Notes
Côte d'Ivoire, Africa	DynExAfrica (Dynamiques et Excellentes d'Afrique)	Pan-African STEM NGO providing a "girls into STEM" program for financial empowerment for youth in disadvantaged and rural areas. https://www.facebook.com/DynExcA <u>frica/</u>
Cameroon, Africa	Educlick Africa	E-learning platform to make education accessible to displaced persons and refugees. <u>https://www.facebook.com/EduClick</u> <u>Africa/</u>
Europe, North America, and Pacific Nations	Gender & STEM Network	Network of researchers/ social scientists specializing in gender issues in STEM. <u>https://www.facebook.com/groups/G</u> <u>enderandSTEM/</u>
Kenya, Africa	ICRW - International Center for Research on Women	Global research institute whose mission is to empower women, advance gender equality and fight poverty. <u>https://www.icrw.org/</u>
Côte d'Ivoire, Africa	Impact'Lab UNESCO	Incubation centre for young people. https://www.facebook.com/Incubateu r.UNESCO/
Global	International Science Council	Noted that ISC connections were regional and in Latin America. <u>https://council.science/</u>
Brazzaville-Congo, Africa	La Maison de la Société Civile	Network of civil societies and NGOs.
Cameroon, Africa	Networks of Scientific Journalists of Africa and Gender Data Journalists	
Africa	OWSD-Africa - Organization for Women in Science for the Developing world (African chapter)	OWSD is a global organization linking women scientists from the developing world, with regional networks.
Africa	PAVNET - Pan African Volunteers Network	Volunteering experts aiming to reduce poverty. https://pavolpavnet.medium.com/

Table 4 cont'd

Country/Region	Organization	Notes
Ethiopia, Africa	Safe Light Initiative	Non-profit organization to provide youth with training and opportunities for change in mindset and innovative skills. <u>https://safelightet.org/</u>
Senegal, Africa	Sciences et Technologies au Féminin	Women in STEM network. https://www.facebook.com/Femmese <u>nSTIM/</u>
Global	Space Generation Advisory Council	The network of young professionals and students in the space industry. <u>https://spacegeneration.org/</u>
Ethiopia, Africa	STEMpower	STEM organization providing hands- on labs for pre-university students. <u>https://www.stempower.org/</u>
Africa	UNESCO Cameroon	
Africa	UNESCO Congo	
Africa	UNESCO for Central Africa	
Africa	UNESCO Côte d'Ivoire	
Africa	UNESCO Peacemakers	
Kenya, Africa	UoEm (University of Embu)	Chartered university https://embuni.ac.ke/
Bolivia, South America	UPSA (Universidad Privada de Santa Cruz de la Sierra)	Private university https://www.upsa.edu.bo/es/
Global	WFEO - World Federation of Engineering Organizations	http://www.wfeo.org/ Shared through the Women In Engineering committee.
Kenya, Africa	Women's Economic Empowerment Community of Practice	https://weecopkenya.org/ A CoP led by ICRW.
Zimbabwe, Africa	ZIE Women in Engineering	Network of Women in STEM https://www.facebook.com/WIEZimb abwe/

Figure 2: Photographs and posters for dissemination activities in Bolivia, Sierra Leone, Republic of Korea, and Congo-Brazzaville (photos from top to bottom, left to right)

GISE Report 2022

Results of the 2022 Survey

Actual country and regions

As noted in 2021, it was very possible to reach a wide range of countries: the target was a minimum of 15 countries, but the survey reached 79 in 2022 (Figure 3). Few countries reached the target sample size of 100, aside from: South Korea, Japan, India, Europe (as a region), English-speaking Africa, French-speaking Africa, and Cameroon, similar to the responses from 2021. Despite this, analyses were carried out on the responses even where the sample sizes were smaller than 100 when there was indication of some statistical meaning. Responses were grouped and included in comparative analyses where relevant.

(KEY: white = 0 responses, green = responses)

Figure 3: World Map indicating reach of the GISE Survey

Summary Tables of Data

The following tables provide an overview of the output data from the 2022 survey.

	Target	Achieved	
Responses	1500	2900 approx. of which 1911 have been included in initial analyses.	
Countries	15	79 across all regions of the world (except Antarctica)	
Female: Male	50:50	49:51	
STEM Sectors	N/A	32 specialisms identified, re-categorized into 7 STEM Clusters	

Table 5: Targets and Numbers Achieve

As shown in Table 5, the initial targets of the project were reached. Of the near 2900 responses to the questionnaires, around 280 were discarded due to errors etc. and a further 676 responses from Africa arrived after the deadline. Of the late responses 515 were included in the secondary analyses.

Table 6 shows the breakdown of analyzed responses by gender vs region or country. Responses from 967 men, 935 women and 9 non-binaries were analyzed.

	Africa	English speaking Africa	French speaking Africa	Europe	India	Japan	RoW*	South America	South Korea	Taiwan	Totals
Men	194	85	109	21	644	16	42	5	18	27	967
Women	242	95	147	44	258	130	59	38	138	35	944
Non- binary											9**
Grand Totals	436	180 (301)	256 (650)	65	902	146	101	43	156	62	1911

Table 6: Breakdown of analyzed responses by Gender X Region/Country

* *RoW* = *Rest of World, i.e. clustering of all other countries and regions.*

(Figures in brackets) include the late responses.

**The 9 non-binary responses are included across the row of responses categorized as "Women".

Table 7 shows the breakdown of analyzed responses by STEM clusters against region or country. The largest cluster was Maths & IT with 583 responses followed by 527 from Engineering.

Region/ Country	Agricul- tural	Engin- eering	Health & Medicine	Maths & IT	Natural Sciences	Other STEM areas	Social Sciences	Grand Total
Africa	38	65	46	99	55	28	105	436 (951)
Europe	2	16	2	17	7	7	14	65
India	10	288	30	414	89	26	45	902
Japan	6	32	38	6	45	13	6	146
RoW*	-	54	7	16	17	6	1	101
South America	1	12	-	9	4	4	13	43
South Korea	1	42	21	19	58	7	8	156
Taiwan	2	18	24	3	10	3	2	62
African Diaspora								31 (35)
Grand Total	60	527	168	583	285	94	194	1911

Table 7: Breakdown of analyzed responses by STEM Cluster X Region/Country

* *RoW* = *Rest of World, i.e. clustering of all other countries and regions.* (*Figures in brackets*) *include the late responses.*

We include here the total for the African Diaspora but note that as the sample sizes of 31 (and with the late responses, 35) was small, analyses were not carried out on the African Diaspora as a separate grouping of peoples.

Analyses carried out

As noted earlier, there were two phases of analyses:

- Initial analyses based on 1911 responses.
- Secondary analyses for the late responses from Africa included the comparison of English-speaking and French-speaking Africans to the statements.

The initial phase included extensive comparative analyses of responses to the key gender perception questions B1-B6, C1-6, etc. to H1-5. These were carried out as for 2021. Further comparisons by gender, etc. have also been conducted based on the response to some of the key Section A questions.

Analysis of responses to sections B to H, including C/D, were prioritized for South Korea, but also conducted across all data and for each distinctive GISE Countries/Regions with a large enough number of responses or meaningful results.

Table 8 lists the statistical comparisons according to gender, STEM clusters, country, or HDI and GGI. For 2022, special focus was placed on Africa as shown in this table.

Type of comparison	Description
1. By gender	A comparison of responses to sections B-H for all male versus all female/non-binary (NB. All non-binary respondents considered themselves to have similar issues to women and so were clustered with female) globally, and then for South Korea, Africa, India, Japan, Europe, South America, and Taiwan.
2. By STEM cluster	A comparison of responses to sections B-H by STEM Cluster. This requires at least two analyses: globally and for each region 2a. Overall Comparisons to find statistically significant values for the mean response values, followed by 2b. Multiple Comparisons of STEM Clusters.
3. By STEM X Gender	For each STEM Cluster, a binary comparison of male versus female responses to Sections B-H.
4. By Country	A comparison of responses to sections B-H for South Korea against all other countries/regions, i.e., rest of the world, and similarly for Africa, India, Japan, Europe, South America, and Taiwan.
5. By STEM Experience	A 3-way comparison of STEM Experience (early career, mid- career, and senior) across all responses to sections B-H (two sets of analyses: Overall Comparison and then Multiple Comparison) followed by three 2-way comparisons across all responses of a. male early career vs. female early career b. male mid-career vs. female mid-career c. male senior vs. female senior

Table 8: List of Statistical Comparisons Conducted

Table 8 cont'd

Type of comparison	Description
6. Leaving STEM	Comparison of male vs. female across ALL data to their response to the question in Section A "2.4 (c) Have you left STEM or considered leaving STEM permanently?"
7. By HDI and GII	Comparisons of responses to sections B-H across countries clustered according to levels of HDI and GII, followed by comparisons of groupings by gender X HDI.
8. Focus on Africa	For Africa only: a comparison of responses to sections B-H for a. women in Africa compared to women in all other areas of the world, b. and men in Africa compared to men in all other areas of the world. Additionally, the secondary phase analysis compared English- Speaking and French-Speaking Africa.

Where possible, statistical tests employed replicated those employed in 2021 and include:

- (a) Testing variances for equality, using Levene's test for 2-way or binary comparisons, or for homogeneity in multiple comparisons.
- (b) T-test for two-way comparisons
- (c) ANOVA and Welch for three-way comparisons
- (d) Extended techniques, e.g., Mann-Whitney and tests for small sample sizes, were applied when data conditions were not validated, but conclusions tended to remain the same.
- (e) Bonferroni tests for multiple comparisons.

When interpreting the results, the actual mean values and variances for the group were taken into consideration.

Interesting results and interpretations

The following outlines the most interesting of the comparisons, i.e., where the test results identified clear differences in the populations.

Does "The global war of the sexes" continue in 2022?

A comparison of all responses shows that for nearly all statements there are significant differences in responses between men and women/non-binary. And the higher sample size means that we can be more confident that men and women indeed disagree with each other over gender barriers in STEM.

Globally, there are notable differences of opinion across many statements, as can be seen in the snapshot of data sorted by the t-value, where a high t-value indicates the groups are different (Figure 4). Comparing against the 2021 results, we note that statements where there were greatest differences in 2021 appear quite high up in the set of statements where there is disagreement between the genders in 2022, i.e. **H3** (I have not been personally affected by gender barriers in STEM), **G5** (Women receive the same social evaluation and respect as men in their roles as scientists or engineers by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.), and **G2** (Women equally receive the appraisal or award for the outcome of their project or research or work) where women are more likely to disagree, and also **E3** (It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field) where men are more likely to disagree.

The full list of disagreements in 2022 is much longer and we note that the top disagreements appear when comparing the first two of the direct and indirect experiences statements: women are much more likely to report having experienced gender barriers, than men are likely to report having seen women experience these gender barriers.

- **CD1** Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.
- **CD2** Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.

At the other end of the scale, women are more likely than men to agree that quota systems/affirmative actions and strong policies are necessary (statements E3 and E2 respectively), although the differences are not so stark.

Sadly, the statement **E1** (I believe things will turn out fine in the future career for women in STEM) also appears in this list of disagreements between men and women.

Independent Sample Test: T-Tests							
		Descriptive	e Statistics	t-test for Equality of Means			
Statements*	Female Non- binary- Mean	Female Non- binary-SD	Male- Mean	Male-SD	t	df	Significance Two-sided
CD1	2.74	1.35	1.77	1.05	17.44	1778.90	0.00
CD2	2.69	1.34	1.81	1.08	15.77	1808.45	0.00
G1	2.45	1.25	1.69	0.89	15.42	1697.02	0.00
G2	2.43	1.27	1.67	0.89	15.16	1683.85	0.00
H3	2.66	1.36	1.82	1.04	15.10	1769.58	0.00
G5	2.70	1.36	1.86	1.07	14.95	1788.93	0.00
CD6	3.09	1.32	2.28	1.29	13.62	1903.62	0.00
G6	3.24	1.52	2.35	1.34	13.54	1866.11	0.00
B3	2.64	1.33	1.89	1.12	13.31	1837.,83	0.00
CD3	2.87	1.37	2.11	1.15	13.01	1834.91	0.00
CD4	2.87	1.34	2.13	1.17	12.91	1860.36	0.00
E1	2.02	1.05	1.48	0.78	12.60	1735.95	0.00
F2	3.93	1.36	3.17	1.45	11.88	1904.57	0.00
G3	2.31	1.24	1.72	0.94	11.61	1759.36	0.00
F1	3.28	1,48	2.54	1.33	11.50	1879.01	0.00
B6	2.55	1.36	1.90	1.12	11.28	1829.06	0.00
G4	2.44	1.21	1.86	1.03	11.16	1844.93	0.00
F4	3.99	1.35	3.29	1.52	10.57	1892.42	0.00
B1	2.30	1.33	1.73	1.05	10.40	1796.04	0.00
F3	3.49	1.46	2.81	1.43	10.18	1904.09	0.00
CD5	2.31	1.29	1.77	1.09	10.01	1843.12	0.00
B2	2.30	1.26	1.81	1.09	9.04	1859.91	0.00
H5	1.97	1.07	1.65	0.91	7.15	1842.80	0.00
H1	2.14	1.05	1.83	0.86	7.07	1820.55	0.00
B5	2.53	1.35	2.16	1.20	6.30	1874.33	0.00
H2	2.15	1.04	1.97	0.96	4.04	1887.00	0.00
B4	2.57	1.32	2.36	1.34	3.44	1908.00	0.00
G7	2.89	1.30	2.76	1.37	2.04	1906.22	0.04
H4	1.65	0.96	1.57	0.80	1.77	1835.61	0.08
F5	1.75	1.12	1.82	1.12	-1.26	1908.00	0.21
E2	1.48	0.79	1.66	0.95	-4.68	1864.25	0.00
E3	1.98	1.14	2.36	1.39	-6.58	1849.10	0.00

(NB. Data in GREEN and RED indicate where differences between the men and women are notable. Data in GREEN are for statements where women are more likely to disagree than men. Data in RED are for statements where men are more likely to disagree with women.)

Figure 4: Snapshot of results for the Global War of the Sexes

*Statements corresponding to Figure 4 are as follows.

B1- Girls and boys are equally encouraged to choose any major/field of study in STEM during their education period.

B2- Female students in STEM receive equally fair assessments and appraisals for their work, task, or project results, compared to their male counterparts in the same programs and levels.

B3- Women in STEM receive equal work distribution and work appraisals compared to men of the same qualifications and level.

B4- It is equally difficult for a woman as for a man to get a job in the STEM field with the same qualifications.

B5- Being promoted or becoming a tenured professor or a principal investigator is equally difficult for women in STEM as for men in STEM.

B6- Women in STEM generally receive equal pay for equal work, compared with their equally-qualified male colleagues.

CD1- Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.

CD2- Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.

CD3- Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc.)

CD4- Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their senior classmate, lab-mate or professor (in university laboratory or project group, etc.), or senior colleagues or managers at work.

CD5- Women in STEM being disadvantaged in accessing research/work equipment or information because she is female.

CD6- Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.

E1- I believe things will turn out fine in the future career for women in STEM.

E2- It is crucial to have strong policy support to solve gender inequality in the STEM field.

E3- It is appropriate to introduce a quota system* or affirmative actions* to solve gender inequality in the STEM field.

F1- In a relative sense, men are rational while women are emotional, and thus they ought to complement each other by carrying out roles that are appropriate for their gender.

F2- Primary breadwinners (who take care of financial obligations) of households should be men.

F3- Women are born to be, or naturally able to care for children in a way that men are just not as capable.

F4- In order to maintain the order and peace of a family, the husband should have greater power and authority than the wife.

F5- I believe gender equality will be fully achieved only if women are given equal opportunities as men.

G1- Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work.

G2- Women equally receive the appraisal or award for the outcome of their project or research or work.

G3- The strictness, objectiveness and importance of the research or task outcome are equally respected regardless of the sex/gender of the person in charge.

G4- Dealing with funders (those providing funding for research projects or those providing the budget for a work project), in terms of administrative or budget process, is equally fair regardless of the gender/sex of applicant or project leader.

G5- Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)

G6- Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.

G7- Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female.

H1- On balance, my STEM career has progressed well so far.

H2- I am considered by colleagues to be either a leader in STEM, or on track for leadership.

H3- I have not been personally affected by gender barriers in STEM.

H4- My family /partner /friends are, on the whole, supportive of my STEM career.

H5- My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment.

Region/ Country	Statements where there were significant differences	Comments on the difference
South Korea	There were many statements where there was significant disagreements, including all the CD statements, with 5 out of the 6 CD statements being the most disagreed with. The following statements were also contentious: G5 , G2 , G1 , H3 , G6 , G4 , B3 , G3 and B1 . In addition, women were more likely to agree with these statements: E2 It is crucial to have strong policy support to solve gender inequality in the STEM field. E3 It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field. And an unusual disagreement: G7 Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female.	In South Korea, there were strong disagreements for these statements with a mean difference in response values often over 1. For G7, it seemed men were more likely to agree than women with this statement. NB the sample size for men was small at 18.
Africa	The major disagreement was for: G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.	The statistically significant disagreements were not notable! There were no disagreements with a mean difference value greater than 0.07.
Taiwan	All of the CD statements were in the top areas of disagreement.	Although the overall sample size was small (total of 62), the tests indicated statistically different results.

Table 9: Notable highlights of differences by Gender

Table 9 cont'd

Region/ Country	Statements where there were significant differences	Comments on the difference
Europe	 H3 I have not been personally affected by gender barriers in STEM. Also, B5, B3, B6, G5, and: F1 In a relative sense, men are rational while women are emotional, and thus they ought to complement each other by carrying out roles that are appropriate for their gender. 	There were quite strong disagreements for these statements with a mean difference in response value sometimes slightly greater than 1. The disagreement over F1 may be surprising, given the expectation that there is more gender equality in Europe than in most other regions of the world.
India	The statistically significant disagreements were not notable, aside from the following statement: B4 It is equally difficult for a woman as for a man to get a job in the STEM field with the same qualifications.	Although there were no major areas of disagreement, men were more likely to disagree with the B4 statement! However, it may be that this is due to male respondents in India claiming a bias for women in STEM.
Japan	 H3 I have not been personally affected by gender barriers in STEM. Also, G5, CD2, B3, G2, G3, B2, G1, G4 and F3. As could be expected there is also disagreement: E3 It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field and with B3. 	As for South Korea, in Japan there were strong disagreements for these statements with a mean difference in response values more often than not over 1. Women are much more likely to agree with E3 than men.
South America	F2 Primary breadwinners (who take care of financial obligations) of households should be men. Also, G5, F1, B4, CD3, B5, CD2, CD1, CD4 and F4.	There were some very strong disagreements between men and women with F5 having a mean difference value of over 2. NB. The sample size of men was very small: only 5, and perhaps this is not meaningful.

Results from other comparisons

Interpretations were possible when comparing across STEM sectors and different countries and regions. Examples of these are:

- The comparison of all STEM Clusters in South Korea.
- South Korea compared to all other countries aggregated.
- Where there were sizable samples for other GISE countries/regions, i.e. Africa, Europe, Japan, etc.

Some interesting results came from global data to compare: men versus women by STEM Clusters; men and women in the 3 groupings Early Career, Mid-Career, Senior; and men versus women according to whether they have considered leaving STEM.

The most difficult to interpret are the results for STEM Clusters as this requires referring to two different tables of statistical results (i.e. the Overall and Multiple Comparisons), as well as the tables for codes (i.e. the STEM Cluster letter codes in the table on page 7 and the coding of responses to indicate gender equality as shown in the table on page 8). Interestingly, the global overall comparisons for STEM Clusters showed several statistically significant differences and detailed interpretations could lead to a whole new report.

For Countries X STEM Cluster set of analyses, there were not so many obviously significant responses, which may be due to sample sizes, but a longitudinal analysis may reveal more.

Finally, the comparisons between African men and all other men, and African women and all other women are included in this section.

The most notable and a sample of interesting differences are recorded in Tables 9 and 10. Table 9 shows differences in responses by gender while Table 10 outlines other comparisons; for example, Korea vs other regions.

Comparative Analysis	Statements of interest	Comments
South Korea vs all other regions	 G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance. CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare. 	It is very interesting to see how the two statements where Koreans seem to disagree strongly with the rest of the world are both on the impact of marriage, pregnancy and childcare. Koreans are more likely to report being affected (CD6) and more likely to disagree with G6. In both cases the mean value difference is slightly over 1. This would imply that the issues of childcare for working parents are still very much alive in South Korea.
Taiwan vs all other regions	F4 In order to maintain the order and peace of a family, the husband should have greater power and authority than the wife.	Taiwanese seem to disagree with this statement more strongly than the rest of the world. This would indicate a better potential for gender equality! However, the absolute mean difference was not high.
Africa vs all other regions and Africa X Gender vs. all other regions	 F4 In order to maintain the order and peace of a family, the husband should have greater power and authority than the wife. F2 Primary breadwinners (who take care of financial obligations) of households should be men. E3 It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field Also F1, F2, and F3 	In contrast to Taiwan, respondents from Africa were much more likely to agree very strongly with these statements than the rest of the world. African men were strongly in agreement with F4, compared to men from elsewhere. But they were also more likely to agree with E3. African women were much more likely to agree to nearly all statements in Section F (F1 to F4) compared to women from elsewhere.

Table 10: Other notable results from comparisons

Comparative Analysis	Statements of interest	Comments
South America vs all other regions	F1 In a relative sense, men are rational while women are emotional, and thus they ought to complement each other by carrying out roles that are appropriate for their gender. And section B .	In South America, respondents were more likely to disagree with the statements F1 indicating GE, but also much more likely to disagree with the statements in section B, indicating less GE.
Japan vs all other regions	F1 In a relative sense, men are rational while women are emotional, and thus they ought to complement each other by carrying out roles that are appropriate for their gender.	As for South America, in Japan, respondents tend to disagree with F1, much more so, compared to all other respondents. In general, respondents in Japan are more likely to disagree with statements so highlighting the potential for GE.
Europe vs all other regions	B1 Girls and boys are equally encouraged to choose any major/field of study in STEM during their education period.	Europeans do not feel that boys and girls are equally encouraged into STEM.
India vs all other regions	CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	The significant mean value differences (absolute values were less than 0.75) did not appear to indicate huge differences of opinion compared to the rest of the world, although there appears to be more agreement with CD1.

Comparative Analysis	Statements of interest	Comments
STEM Clusters - globally	 CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female. And E1 I believe things will turn out fine in the future career for women in STEM. NB Many other interesting interpretations are possible! 	We note from the multiple and the overall comparisons that responses from the Medicine and Health sector are more likely to disagree with CD1 (mean value 2.62) compared to Engineering, Maths/Numerical Sciences, and Social Sciences (with mean values 2.20, 2.00 and 2.20 respectively). This may surprise those in engineering sectors who argue that we only need to see more women in engineering for gender barriers to be reduced. Similarly, responses to E1 are clearly more pessimistic for Medicine and Health compared Agricultural, Engineering, Maths/Numerical Sciences and Social Sciences.
Agriculture STEM Cluster X Gender	 G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance. F4 In order to maintain the order and peace of a family, the husband should have greater power and authority than the wife. 	Women in Agricultural sectors are more likely than men to disagree with G6. And men in the Agricultural sectors appear to be conservative with more agreeing with F4 than women in Agriculture with a mean difference of 1.4.
Engineering STEM Cluster X Gender	 CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female. CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female. Section G and: H3 I have not been personally affected by gender barriers in STEM. 	There are many statements where women in Engineering are more likely to indicate gender barriers, including all of Section G on treatment at work.

Comparative Analysis	Statements of interest	Comments	
Early career vs. Midcareer vs. Seniors - Globally	Nearly all statements.	It is notable that the three categories can be differentiated in terms of their perceptions of gender barriers. However as noted below, the mean values for responses do not vary in one direction.	
Senior X Gender	 H3 I have not been personally affected by gender barriers in STEM. CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female. CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female. G1 Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work. G2 Women equally receive the appraisal or award for the outcome of their project or research or work. 	Senior women in STEM were much more likely to disagree with H3 compared to senior men. And to disagree with G1 and G2. They were also more likely to report having been disadvantaged at work (CD1 and CD2).	

Comparative Analysis	Statements of interest	Comments	
Mid-career X Gender	 G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance. H3 I have not been personally affected by gender barriers in STEM. CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy, or childcare. Also, G5, G2, CD1, G1, CD2, B3. 	Mid-career women (i.e., 10-20 years' experience) were more likely to report having been impacted by marriage and childcare etc. than men. This might be as expected. What is not so expected is the number of statements where there is a big difference (i.e., 1 or nearly 1) between the responses of women and men.	
Early Career x Gender	None!	This is included to highlight how early career women (i.e., up to 10 years in STEM) do not report any significant differences compared to early career men.	
Leaving STEM	STEMThis analysis compared the responses by men and women to the question in Section A: Have you left STEM or considered leaving STEM permanently?The analysis shows th are differences in resp this question, but with mix of results. Men ar likely to reply with a ' than women, whilst w more definitive with th responses and either re a Yes or a No.		

Countries grouped by human development & gender equity indices (HDI/GII)

An additional analysis assessed the concept of comparing responses to B-H sections according to groups of countries with the same values of the HDI (Human Development Index) and secondly with clustering of countries according to the GII (Gender Inequality Index).

For HDI, it was notable that responses for countries with Very High and High ratings were almost indistinguishable: the comparative analysis showed only three statements where there was any statistical difference in the mean values. The responses for countries with Medium and Low Ratings were also remarkably similar. It may be possible to simplify comparisons in the future by grouping Very High and High HDI countries, and Medium and Low HDI countries. This will enable other interesting groupings to be considered while keeping sample sizes large.

In 2021 there were only a handful of questions for which the correlations were meaningful where the absolute values of the coefficients indicated a low to moderate correlation. But with the increased sample size, this year it was clear that there is a close correlation between HDI and GII: i.e. the results and comparisons for countries by GII rankings were similar to the results and comparisons for HDI groupings.

The statements of greatest interest were:

- **G6** Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.
- **CD6** Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.
- G7 Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female.

There is a distinct difference in responses to these statements: respondents from high HDI countries are more likely to disagree with these statements.

Focus on Africa

In the above section and in Table 10, we have reported on some of the more notable comparisons for African men vs. all other men and African women vs. all other women from the initial analyses.

In addition, a secondary analysis was carried out making use of all the late responses to compare responses from English-speaking Africans to French-speaking Africans. There were no interesting differences to report. This does not mean that there are no differences across countries in Africa, of course, but it would confirm that there are no systemic cultural issues related to the European official language in use.

GISE Report 2022	©2022 INWES & KWSE
------------------	--------------------

Other considerations and issues:

Assumptions and biases

A key assumption made in this study and in preceding studies is that it is women who are impacted negatively by gender inequality. A few respondents noted this, and in some cases added quite strongly worded comments (here shown verbatim):

"Girls are given unfair advantages in STEM because of quota".

"[...]I don't think there is any gender equality. But I do feel that there is gender inequality for males. Because girls are getting more chances and opportunities than boys."

"I believe that females get much more opportunities not only in getting better jobs but also in other aspects of the opportunities.[...]"

"i feel that there are enough laws for protection of women in stem. So. There is no need of extra quota or anything else for women - this creates inequality between women and men. And this will leads to discrimination"

"I totally agree that women are facing issues in STEM but in same way men are also facing issues. So I believe never see issue only from women side when it is gender issue. Here both are victims on sometimes.[...]"

"I have seen cases where Women not only receive equal opportunities as Men but also have a bias TOWARDS them [...]"

In future studies, it will be important to address these concerns of biases and assumptions explicitly. This will need both justification where an assumption has to be made, or alternatively attempt to remove the bias in the statements.

In carrying out the detailed analysis and interpretation, particularly in relation to the GISE Index, it was noted that there were some statements which could be interpreted in several ways. For example,

F5 I believe gender equality will be fully achieved only if women are given equal opportunities as men.

Disagreeing with statement F5 can both mean that the respondent does not believe equal opportunities can ever lead to gender equality since there is no possibility of gender equality, or on the other hand that the respondent believes that for gender equality to exist there needs to be more action than just equal opportunity. As a reflection of this potential for confusion, we note a final comment made by a respondent:

"There can never be equality when it comes to gender matters in STEM or any other field. We must consider pursuing the EQUITY agenda rather. What are the peculiar strengths and weaknesses of females in STEM? How can it be harnessed so they become the best in their context."

This last respondent would probably not agree that "gender equality" is possible but is likely to agree with the idea of equal opportunities.

Confounding variables not yet included in analyses

The following are variables not included in analyses for this study, so may be added to future projects or INWES regions may be encouraged to conduct their own analyses:

- Family responsibilities: In most regions, there is considerable debate over the impact of family caring tasks carried out mainly by women. This will be a ripe area for future analysis.
- Age: although where the career stage was not clear from the number of years in STEM, the career stage was estimated by comparing year of birth to the number of years of experience in STEM given.
- Original STEM focus: when considering the STEM specialism or sector of a respondent, if the current STEM specialism was unclear, the original STEM specialism was chosen as the representative area of STEM for the respondent.
- Type of organization: some of the respondents noted that in their countries the situation of women in industry was quite different to the situation of women in public sectors.

The origins of the respondents in principle allows for checks on outliers. In practice, this question was used to assess possibilities of errors in interpretations of the questions regarding the African diaspora. It was clear from the combination of origins that many respondents misunderstood the question on the diaspora: many in Africa claimed to be part of the diaspora when the definition would exclude them from being considered.

• African Diaspora: as noted earlier, this analysis was not conducted in the initial phase. The sample of respondents who considered themselves (and who could be considered) to form part of the African diaspora was too low for meaningful interpretation. In future studies, it may be possible to highlight this as a desired group for responses and aim dissemination and promotion of the survey to this group.

Other confounding variables not applied in this phase include the region-specific questions:

- Republic of Korea: regions of origin
- Africa: belonging to a large or polygamous family
- India: religion and caste
- Europe: disabilities and other aspects of diversity
- New questions for Latin America

The raw data is being made available to the regions and others who will be able to add to the analyses by comparing results clustered by the values of these confounding variables.

Sample sizing

In 2021, concerns were raised on sample sizing. These concerns were considered, and a proposal was made to address the need for sample sizes that reflect population sizes. A further review was carried out this year to assess current practice regarding global surveys. Advice was also obtained from the contracted data analysts and statisticians.

The OECD Handbook on good practice for creating composite indices provides guidance on sample sizing (OECD 2008). The OECD Handbook summarizes the various approaches and notes that the sample sizes can be small, and choices are guided by heuristics with no fully objective method to agree a minimum sample size.

The advice from the data analyst on this project is that the statistical tests will themselves indicate which results are robust and which are not. To be on the safe side, the heuristic that 30 or fewer responses is too small a sample was also applied.

"A tool for change" - the GISE Index

In 2021, there was a proposal for an index to measure the progress of women in STEM at national or regional levels. An approach was proposed based on comparing male versus female perceptions of gender barriers: the wider the variance between men and women, the more likely gender barriers exist and the less likely there will be change. This index would be measuring the potential for gender equality in STEM.

In testing the proposed index, however, it was found that the variations at one end were not linear and at some points did not vary enough to distinguish between regions.

In 2022, a new slightly different form for the GISE Index has been proposed. It is based on considering two aspects or *factors*:

- a comparative factor **Views of Gender**: as for 2021, this results from comparing perceptions of men and of women and where there is agreement, this is likely to mean potential for better gender equality in STEM in the immediate future.
- an absolute factor **Differences in Perceptions**: we can also consider any absolute indicators of gender issues and sexism. Where these exist, there is lack of gender equity right now.

The reasoning for this is that we wish to be able to compare not just numbers of women in different STEM sectors but also shifts in cultural change. Those shifts would be indicated by the comparative factor. The absolute factor though provides concrete evidence of gender equality.

Figure 5 provides a high-level logical view of this composite index.

This first analysis includes almost all questions from Sections B-H; i.e., the question marks in the diagram in Figure 5 can be replaced with all statements. Only question F5 has been discarded. Initial coding was drafted as shown: Survey questions on gender barriers.

Figure 5: The 2022 GISE Index based on two factors

Addressing concerns arising from initial analyses

Initially there were a few concerns, which are here resolved. An initial worry was discovering a positive association between Section F and the other sections (i.e., B, CD). This concern was addressed relatively easily.

At first glance, F should be negatively correlated. But F measures "what should be," and the other sections measure "what is". It is rational and consistent that someone who perceives gender inequality would also wish for gender equality: since statements in Section F are negatively worded (in the sense that the scenarios presented are negative from a gender equality standpoint), someone who reports perceiving unequal opportunities between boys and girls (disagree to **B1**) would also disagree to **F1** (In a relative sense, men are rational while women are emotional, and thus they ought to complement each other by carrying out roles that are appropriate for their gender).

Disagreeing with B1 means that respondents recognize a gender barrier (due to gender inequality) and disagreeing with F1 means the respondent does not wish for gender-specific roles (due to gender equality). As such, the scales in both sections are already in

the correct direction (the higher the mean, the more respondents wish for gender equality/perceive gender inequality). This means that responses to F are not reverse coded for the purposes of the GISE Index.

In addition, in the initial test, India scored relatively well in comparison to other regions on the factor "Absolute view of gender barriers in STEM", but one of the worst in terms of "Comparative view of gender barriers in STEM". This may be that the sampling is skewed towards India as there are many responses from India. Similarly with the number of responses from Africa as compared to the rest of the world. It may be that we are detecting a difference between men and women in India, but not elsewhere and so assuming agreement elsewhere rather than having enough information to support that there is disagreement.

A possible solution is to employ only the absolute factor, but this does not meet the approach sought after, i.e., being able to use comparative data. Instead we applied the following differentiated coding for responses from men and women for the two factors and this provided the results shown below.

Factor 1: Absolute views

The initial test analysis indicated that only responses from women should be used in calculating the first factor (absolute). Since we are comparing regions, a low mean to any statement would be indicative of lack of gender inequality as perceived by all. Yet if men perceive no gender inequality (and the data seem to suggest this is the case, at least in some instances), and the sample for one region is mostly comprised of men, this could artificially sway the results to show "gender equality" when in fact, it might be due to an overrepresentation of men in the sample. Retaining only answers from women would allow for a more comparable view across countries for this factor.

Factor 2: Comparative views

On the second factor (comparative views), only gender gaps/effects when women report being disadvantaged over men are included. This would allow for a more focused relevant factor.

For example, regarding **B1** (Girls and boys are equally encouraged to choose any major/field of study in STEM during their education period):

- If women disagree more than men, it is included, as well as the magnitude of the disagreement. This shows an issue from a female perspective.
- If there is no difference or if men disagree more than women, it is recorded as "0".

Also considered was splitting the factor in two: one for when women perceived being disadvantaged over men, and another for when men perceived being at a disadvantage over women. This was not implemented here.

The implemented process and solutions

The following describes the process employed with comments on solving some of the concerns raised above. This is the methodology for future analyses:

Step 1: Initial set up

1.1: To ensure consistency in directionality among all items, items G7, E2 and E3 were reverse-coded. As such, for all items, the higher the mean, the more respondents report perceiving gender inequality or wishing for gender equality.

1.2: The dataset is prepared such that each row represents a country or region (shortened to Region) selected because of the sample size or importance to the survey.

Step 2: Calculate Factor 1 - Views of gender (Absolute)

As Factor 1 is meant to highlight regional differences in how women perceive gender roles, gender in STEM and experiences, **only responses from women are retained for this factor.** This also accounts for imbalances in the distributions of men and women per region.

The following steps are applied to response values from sections B, C/D and F (excluding F5 as explained earlier) only.

2.1 Reliability analyses are carried out. Compute the mean value of all items in a section for each region.

2.2 Standardize the mean values for each item across all regions.

2.3 Compute the mean values of the standardized means for each section.

2.4 Compute the mean of all 3 sections: this provides the "Views of gender (absolute)" factor value. The lower the value of the mean of means, the more women are reporting experiencing gender barriers.

Step 3: Calculate Factor 2 - Difference between genders (Comparative)

This Factor compares responses from women to responses to men per region. If responses are in agreement (i.e. where the difference in the mean values = 0) then we take this to mean potential for gender equality. Positive differences indicate men do not perceive the barriers that women do, and this will imply a lower potential for gender equality.

The following steps are applied to response values from sections C/D, E, G and H only.

3.1 The *standardized mean difference (d)*, i.e. the mean difference divided by the standard deviation which provides a measure of effect size, was computed for each item per region.

3.2 Given the data structure, positive values for d indicate a perceived disadvantage by women in comparison to men. In order to only capture the experience of women in STEM, where d was negative, i.e. where men appeared to be reporting disadvantages compared to women, d was recoded to 0.

3.3 Compute the standardized means of the values of *d* for each item across all regions.

3.4 Now compute the mean for each of the 4 sections.

3.5 And compute the means of the means of the 4 sections to iterate the "Difference between genders (comparative)" factor.

The lower the value of the mean of means, the greater the difference between the gender barriers reported by women compared to men.

Step 4: Calculate the GISE Index

4.1 Compute the mean of both factors to iterate the "raw" GISE Index. The lower the value, the less likelihood of gender equality in STEM.

4.2 To compare a set of regions, the means of the two factors are normalized to range between 0, for the region least likely to have or to progress towards gender equality in STEM, and 1 for the region with most or likely to progress towards gender equality in STEM. The reported GISE Indices are comparative indices for a set of regions.

An example calculation

Intermediate values for the calculations for the comparisons carried out for this survey have been provided in Appendices, along with all other data. Here, we illustrate the computational steps by considering the data for Africa.

Step 1.1 results in a recoding of the mean value for African women's response to E2 (1.22) to (6 - 1.22) = 4.78. Similarly, the values for E3 (1.44) and G7 (2.57) are recoded to 4.56 and 3.43.

Step 1.2 ensures that all original mean values are transposed into a row format.

Step 2.1 tests correlations to ensure the validity of the data, and mean values for B, C/D and F of 2.16, 2.56 and 2.77 respectively.

Step 2.2 calculates the standardized values for each item in sections B, C/D and F. For example, the standardized mean value of B1 for Africa requires the mean and the standard deviation of all the values for B1 across all regions (i.e. 2.07, 2.10, 1.71, 2.32,

3.39, 2.97, 2.36, 3.0, which are 2.50 and 0.58 (to 2 decimal points). Thus the standardized value for B1 for Africa = (2.07-2.50)/0.58 = -0.74696.

Step 2.3 finds the means of the standardized values for each section B, C/D and F. In the case of Africa, these are -1.14, -0.95, and -2.11.

Step 2.4 calculates the Factor 1 raw value as the mean of the 3 means, to give -1.40

Step 3.1 results in calculations for the standardized mean difference value *d* of each item in the relevant sections. For example, the mean difference value for C/D1 = (mean value for women – mean value for men) = 0.57. To standardize, we find the combined standard deviation for the population of both men and women = 1.1753. The resulting standardized mean difference *d* for C/D1 is 0.57/1.1753 = 0.49 (to 2 decimal places).

Step 3.2 is applicable to the standardized mean differences of G7 and H4 for Africa, where the computed results were -0.164 and -0.11 respectively. These are recoded to 0.

Step 3.3 computes the standardized means of the values of d across for one item across all regions (as for step 2.2). Thus, the standardized d for C/D1 for Africa is -0.92689.

Step 3.4 calculates the mean of all standardized means of d by section, so for Africa and C/D1 this is -0.82.

Step 3.5 calculates the Factor 2 raw value as -0.91.

In step 4.1, we combine the two Factor values to obtain the raw GISE Index. For Africa, this is (-1.40 - 0.91)/2 = -1.15.

The final step 4.2 requires ordering the raw GISE Indices to obtain rankings for the regions being compared.

Summary GISE Index results for the 2022 Survey

The following compares the results for the initial selected set of countries and regions. The results for each of the two factors (absolute and comparative) are included to demonstrate how they may differ

We note that the index seems to indicate that there is still much to be done in Africa and in India before change can happen.

Conversely, South Korea seems to rank highly in the GISE Index, but it is worth noting the difference in the partial indices for the two Factors. The index of 0.65 for Factor 1 (only 4th in ranked order) implies Koreans are reporting gender barriers, but the index of 1.00 for Factor 2 (which is the highest) implies the potential to progress towards gender equity in STEM.

Country/ Region	GISE INDEX	Factor 1 (Absolute) Index	Factor 1 rank order	Factor 2 (Comparative) Index	Factor 2 rank order
Africa	0.00	0.00	1	0.00	1
India	0.16	0.14	2	0.16	2
Taiwan	0.42	0.45	3	0.32	3
Japan	0.70	0.72	5	0.56	5
European Union	0.73	0.95	7	0.33	4
Rest of the World	0.81	0.79	6	0.70	6
(as a comparison)					
South Korea	0.87	0.65	4	1.00	8
South America	1.00	1.00	8	0.83	7

Table 11: GISE Index results

*Index of 0.00 means greatest perception of gender barrier and 1.00 means least perception of gender barrier

Next steps and summary

This methodology allows comparisons of regions, and to dive deeper into two factors for gender equality in STEM, that is, the absolute "what is" and the comparative "what should be".

We do note that there are some low sample sizes for certain regions and that the GISE index does not consider variability in responses. Thus for the moment, we should use this index qualitatively to describe the survey sample, rather than to generalize quantitatively. The results here, however, are highly promising. The intention is to test the above methodology on past survey data focused on the INWES APNN regional network to compare the GISE ranking across the countries of APNN. In addition, in this iteration of the GISE index, all items/sections/factors are given equal weights. Future work could consider testing if components should be weighted differently, and as noted earlier, we may also wish to split the Comparative Factor into two.

Opening access to GISE Data and Collaboration

In past surveys up to 2018, data from the surveys on gender barriers in STEM have been shared with INWES members to direct their own analyses.

In 2021 requests were made to access the new international raw responses. To do this sharing, it is necessary to ensure that data is shared ethically and used responsibly. The following is the proposed policy to make these requirements explicit.

A policy for access to GISE Data

All organizations and individuals requesting access to the GISE data will be asked to abide by the following principles:

- Confidentiality and data protection:
 - All requesters of data will commit to ensure that all data be used responsibly with no attempt to identify any individual. No data can be forwarded onto any other organization. All requests for onward sharing of data must be referred to INWES or KWSE.
 - All data provided by INWES or KWSE will be stripped of any identifying personal information to meet the requirements of the GDPR regulations in the EU and the data protection regulations in Canada.
 - INWES Board of Directors will be ultimately responsible for ensuring that data from 2021, 2022 and any future surveys disseminated by INWES is protected according to all required regulations relevant to INWES and any sharing ensures privacy of all respondents.
- Access: All access to the data will be by request through KWSE and INWES only. Any new results will be shared in return with INWES and KWSE.
- Acknowledgements: KWSE, INWES and the funding organizations of the projects (past, present, and future) will be acknowledged. All publications or projects by those accessing the data that include the data or new analysis of data from any of the GISE related projects (past, present, or future), will acknowledge INWES and KWSE prominently. Similarly and in turn, INWES and KWSE will acknowledge those who have carried out new analyses in any publications or projects that make use of the new analyses.

Guidelines and guidance provided include:

- 1. Data structure and fields for raw data
- 2. A secure online resource of the raw and analyzed data will be created for easy but secure access to data
- 3. Logos and templates for acknowledgements
- 4. A process to share back new analysis results to KWSE and INWES

These guidelines will be made available through the INWES website and promoted to INWES members and supporters, including contacts made through the GISE project.

A GISE STEM community in Africa

Through the work carried out by the Assistant Consultant in Africa, there are many contacts in Africa who are interested in taking part in future surveys and wish to use the evidence from the surveys to inform future work.

INWES is creating an email discussion group for GISE Africa and sharing this with the individuals who have expressed an interest, including the INWES African Regional Network.

Further activities to share GISE outputs and outcomes

In the near future, the following activities are planned:

- A GISE webinar as part of the NGO Forum at CSW67 in March 2023.
- ICWES19, New Zealand, 2023 abstract submitted and accepted for a presentation and workshop: "Gender Data for Science and Engineering: measuring perceptions and experiences across the world"
- There is appetite for further events in Africa and for collaborations to capitalize on the STEM community in Africa. A session entitled "GISE in Africa - Informing Action" is in planning for the next INWES African Regional Network (ARN) Conference in Dakar, June 2023. This session has been proposed to, and tentatively agreed by the ARN Chair.
- A webinar to launch the public report, planned for May 2023 and to include invited speakers from UNESCO and the GISE Community.
- Invited talk at the INWES APNN Conference in Ulaanbaatar, Mongolia, June 28-30, 2023.
- Publication in journals e.g. International Journal of Gender (refer to https://www.unibw.de/gst2022-en/call_ijgst_si_papers_2022-official.pdf) Abstracts are in preparation for submission.

Conclusions and Suggestions

Were the aims of the 2022 survey achieved?

- The base targets were met; with over 1900 valid responses and a reach of 79 countries. In addition, a later 600+ responses from Africa have been included in some of the analyses.
- The project and results from 2021 have been shared at many events, including international events.
- The intention was to create links to external global partners, such as the World Economic Forum, Data2X and the World Bank. Some contacts have been made, but more could be done. On the other hand, the links to UNESCO are strengthened, particularly in Africa.
- The focus on Africa and the additional resourcing for Africa has been successful, albeit late. It is noted that even for professionals working in STEM, Africa's "technology divide" as noted by The Economist (2019) is very real and has a huge impact on how to disseminate surveys to be shared in Africa. The report by the African consultant includes further suggestions and comments to support future work in Africa.

There are rich outputs and outcomes: it was not feasible in the time allowed to carry out the level of data analysis that could be possible. Not all the suggestions from 2021 have been incorporated, for example considering similar sized regions with similar cultural/socio economic issues. Other suggestions that have not been considered in this year's study include:

- The impact of Covid-19 this year's survey did not include any questions to compare pre- and post-pandemic. Although it is tempting to believe that the world has returned to "business-as-usual", there have been some changes to the way we work that may impact on gender and individuals' careers including post-pandemic reduced public spending on education and childcare (McKinsey 2020).
- Job roles have not been included, although there is consideration of STEM levels of experience, and the Latin American specific questions include decision-making roles. It may still be interesting to compare the experiences for women in technical roles with those in facilitating roles. In addition, the issue of gender in technician level roles is still a potential area for future work.

Key results and outcomes

Important outcomes of the project include:

- The processes for running international surveys of gender barriers in the STEM areas and to analyze the data, have been tested successfully.
- A GISE Index based on two complementary, but distinct factors has been developed.

These will provide the basis for future data analysis and surveys.

Other outputs include:

- Survey questionnaires translated to two new languages: Chinese (Traditional Mandarin) and Portuguese to add to the existing versions in Korean, French, Spanish, Japanese and English.
- multiple dissemination events, particularly in Africa, to raise the visibility of the issues of gender barriers and of the GISE project.
- Strengthened visibility of GISE with UNESCO.

In addition, the work in Africa has led to the formation of a large community of STEM linked by their interest in the GISE project.

Next steps and suggestions for future projects

Proposals to run a further project in 2023 with a focus on data analysis. The surveys to date have generated a huge amount of data, including regional/country specific data on confounding variables, which have not been analyzed in full. In addition, the results of all past surveys have not been compared across time.

It is being proposed that in 2023, INWES and KWSE seek to carry out extensive data analyses, and support interested INWES members and external partners to study the existing data. The GISE Index can be tested on past survey data from the INWES APNN regions to compare the APNN countries.

INWES will be sharing this report and maintaining interest in GISE through events to be held during 2023 at ICWES19, and in Regional Conferences for Africa, with the intention of working with KWSE and other INWES partners to deliver the survey again in future years.

References

Buvinic, M., 2017. *Measuring Women's Economic Empowerment: Overview*, Data2X, May. Available at: <u>https://data2x.org/wp-</u> <u>content/uploads/2019/08/WomensEconEmpowermentMeasures_Overview.pdf</u> [Accessed 15 September 2022].

Data2X, 2020. Economic Opportunities | Mapping Gender Data Gaps: An SDG Era Update. (online) Available at: <u>https://data2x.org/wp-</u> <u>content/uploads/2020/03/MappingGenderDataGaps_Economic.pdf</u> [Accessed 12 May 2022]

European Commission, 2018. *Ethics and Data Protection*. [Online] Available at: <u>https://ec.europa.eu/info/sites/default/files/5._h2020_ethics_and_data_protection_0.pdf</u> [Accessed 28 March 2021].

European Commission, 2021. *She Figures 2021: gender in research and innovation : statistics and indicators,* , s.l.: Publications Office.

European Union, n.d. *Guide to the General Data Protection Regulation (GDPR)*. [Online] Available at: <u>https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/key-definitions/what-is-personal-data</u>

Holloway, Y. (2021). Re: Women in Engineering statistics. [email].

Kardash, A. & Kossaim, P., 2018. Chapter 7: Canada. In: *The International Comparative Legal Guide to: Data Protection 2018.* 5th ed. London: Global Legal Group.

Kim, J. S. & Park, H. Y., 2019. Comprehensive Report on Gender Barriers in Science and Engineering in the Asian and Pacific Nations (2014-2018), s.l.: KWSE (The Association of Korean Women Scientists and Engineers).

Kim, J.S. & Peers, S.M.C., 2021. *The 2021 Report on International Perceptions of Gender Barriers in STEM - Outputs and outcomes of the INWES-KWSE pilot survey "Gender perceptions in Science and Engineering" (GISE)*, s.l.: INWES (The International Network of Women Engineers and Scientists) & KWSE (The Association of Korean Women Scientists and Engineers), December, 2021ISBN 979-11-951557-6-7.

KWSE, 2015. *The Glass Ceiling for Asian Women in STEM - The 2015 APNN Joint Survey Report*, s.l.: The association of Korean Women Scientists and Engineers.

McKinsey, 2020. *COVID-19 and gender equality: Countering the regressive effects*, Article, July 15. Available at: <u>https://www.mckinsey.com/featured-insights/future-of-work/covid-19-and-gender-equality-countering-the-regressive-effects</u> [Accessed 20 November 2022]

OECD 2008. Handbook on Constructing Composite Indicators, ISBN 978-92-64-04345-9 Available at: <u>https://www.oecd.org/sdd/42495745.pdf</u> [Accessed 20 July 2022]

Office of the Privacy Commissioner of Canada, 2019. *PIPEDA in Brief*, May 2019. [Online]

Available at: <u>https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/pipeda_brief/</u>

The Economist, 2019. The new scramble for Africa, The Economist, 7 Mar.

UN Women and DESA (Entity for Gender Equality and the Empowerment of Women - UN Women, Department of Economic and Social Affairs- DESA), 2022. *The Progress on the Sustainable Development Goals: The Gender Snapshot 2022*, New York. Available at: <u>https://unstats.un.org/sdgs/gender-snapshot/2022/</u> [Accessed 20 October 2022].

UNDP (United Nations Development Programme). 2022. *Human Development Report* 2021-22: Uncertain Times, Unsettled Lives: Shaping our Future in a Transforming World. New York.

Available at: <u>https://hdr.undp.org/content/human-development-report-2021-22</u> [Accessed 20 October 2022]

UNDP 2022. *Human Development Index*. [online] United Nations Development Programme.

Available at: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI.

UNESCO, 2017. *Measuring Gender Equality in Science and Engineering: The SAGA Toolkit Working Paper 2.* [Online]

Available at: <u>http://uis.unesco.org/sites/default/files/documents/saga-toolkit-wp2-2017-en.pdf</u>

[Accessed 3 05 21].

UNESCO, 2021. UNESCO Science Report - The Race Against Time for Smarter Development. s.l.: UNESCO.

United Nations (2021). *Gender Inequality Index*. [online] hdr.undp.org. Available at: <u>https://hdr.undp.org/data-center/thematic-composite-indices/gender-inequality-index#/indicies/GII</u>.

United Nations (2022). *Gender Development Index*. [online] hdr.undp.org. Available at: <u>https://hdr.undp.org/gender-development-index#/indicies/GDI</u>.

World Bank, 2017. *TCdata360 - Availability of scientists and engineers*. [Online] Available at: https://tcdata360.worldbank.org/indicators/h7c08e10f?country=BRA&indicator=607&vi z=line_chart&years=2007,2017 [Accessed 05 January 2022].

World Bank, 2020. *The Equality Equation – Advancing the Participation of Women and Girls in STEM*, Washington D.C. Available at: <u>https://documents1.worldbank.org/curated/en/789951595308672516/pdf/Main-Report.pdf</u> [Accessed 16 April 2022].

World Bank. (n.d.). *The Equality Equation: Advancing the Participation of Women and Girls in STEM*. [online] Available at: <u>https://www.worldbank.org/en/topic/gender/publication/the-equality-equation-advancing-the-participation-of-women-and-girls-in-stem</u>.

World Economic Forum, 2018. *Global Competitiveness Index*. [Online] Available at: <u>http://reports.weforum.org/global-competitiveness-index-2017-2018/competitiveness-rankings/</u> [Accessed 05 January 2022].

World Economic Forum, 2021. *Global Gender Gap Report 2021*, Geneva: World Economic Forum.

APPENDICES

The following may include documents reproduced as images. They are available in PDF format upon request to INWES or KWSE. In addition, some are also available in the languages of the questionnaires.
Appendix A: Additional Information

A-1. Sample email

Sample email inviting individuals and groups to take part

Note: the following text is the long version of emails sent out. Emails were tailored to the target audience and were usually abbreviated.

Dear colleague,

We would like to invite you and your network to take part in a global survey, a collaboration between the KWSE (the Association of Korean Woman Scientists and Engineers) and INWES, the International Network of Women Engineers and Scientists. The survey captures perceptions of gender barriers in study and work in the sectors and fields related to STEM (Science, Technology, Engineering and Mathematics). This survey has been carried out regularly since 2014 in Korea and the Asia and Pacific Nations Network of INWES. Last year we were tasked with extending the survey to across the world. This year, the survey is bigger. In particular we want to hear from African scientists and engineers but all responses from all countries are welcome and necessary.

We ask all genders, adults who are studying, have studied, are working or have worked in any area of STEM, including social sciences, medicine, architecture etc. to take part in the survey. We also ask you to share with your networks and to encourage them to take part. For any country or region where we reach over 100 responses, we will be able to analyze the data for that area and compare the situation of women in STEM across countries.

The survey is available in several languages online as Google Form, including English <u>https://forms.gle/PAnrZFuWiUD8RsXFA</u>. For more information, for links to the survey and information in many other languages and for the 2021 GISE report, please refer to the project webpage: <u>https://www.inwes.org/gise/</u>. The questionnaire is fully confidential.

This survey is comprehensive but not long. As many of the sections are country-specific, a respondent will complete around 10 sections where the key sections are short. We estimate it takes about 10 minutes to complete.

- Have you ever been asked to explain why there are few women in STEM or what the issues are? Some issues are common across countries and STEM sectors. But some are not. This survey will help us to see what are common issues, and which are not.
- We need data on perceptions. We need to know how people, men and women, feel about gender in STEM. Where perception gaps are small, there is potential for change. Where men and women feel equally valued, there are potential solutions to share. This survey will help to find solutions and policies that work.
- We need you to take part so that INWES can suggest ways to create a better world with the full participation of women in STEM.

How can you help? Complete the survey NOW <u>https://forms.gle/PAnrZFuWiUD8RsXFA</u> and SHARE with all your colleagues, men and women, in all areas of STEM (science, technology, engineering, mathematics, medicine & healthcare, construction, economics, social sciences, architecture, etc.). If your network can provide at least 10 responses, this would be great! Deadline to complete the survey: 25 September. The survey is fully confidential.

- The outputs from the project will be a public report comparing the issues, lessons and solutions for gender equality in STEM around the world. Those solutions can be used to generate future projects and programmes that work and is shared with all INWES members around 50 countries. This is in addition to any country reports (where there are more than 100 responses) which we can share with your organization to help to inform future projects in that country.
- What will be the impact of this project on scientists and engineers? The information we are gathering is vital to be able to suggest policy, organizational, and government changes that will ensure that STEM has a better gender balance. We know that diversity is important to innovation: if our survey can lead to more women in STEM, we will all gain with better science and engineering.
- Why the particular interest in Africa? For Africa, there is very little information about women in STEM: the GISE project and survey hopes to remedy this and we will be inviting global databanks such as the World Economic Forum, the World Bank Group, Data2X, and INWES partners such as the World Federation of Engineering Organizations, International Science Council, and through UN channels to make use of the outputs from this year and past years.

If you have any problems in accessing the questionnaire or any questions, please do not hesitate to contact the Project Manager, sarah.peers@inwes.net.

For more information refer to the project webpage: https://www.inwes.org/gise/.

On behalf of <u>INWES</u> | Twitter: <u>@INWES_Global</u> | Facebook page: <u>INWES</u> | LinkedIn company page: <u>INWES</u>

The International Network of Women Engineers and Scientists

"To build a better future worldwide through full and effective participation of women and girls in all aspects of Science, Technology, Engineering, and Mathematics."

A-2. The Questionnaire

The questionnaires in Korean, English, French, Spanish, Japanese, Chinese, and Portuguese can be made available upon request.

English Version

International Survey 2022: Gender Barriers in STEM

For men and women working or studying any area of STEM*. A survey forming part of the collaborative INWES-KWSE Gender perceptions In Science and Engineering (GISE) project.

*STEM : Science, Technology, Engineering, Mathematics including social sciences, medicine, architecture, etc.

* Required

About this Survey

The purpose of this survey is to evaluate how scientists and engineers across several regions in the world perceive gender barriers experienced by women in STEM. The term "gender barriers" is used in this study to describe hurdles and obstacles women in STEM experience in their educational and professional lives because of their biological and social identity as women.

Please take time to answer each and every question as truthfully as possible. There are no right or wrong answers. Please respond based on your experiences and thoughts.

We estimate the questionnaire takes an absolute maximum of 20 minutes to complete and there are around 12 Sections only (some very short indeed). Your answers will be used only for analytical purposes. All data gathered will be published in combined form. This survey is anonymous and any personal information will be kept strictly confidential. Please see: Data Protection and Confidentiality (http://inwes.org/gise_DP_Confidentiality)

This survey is for respondents of any gender. All respondents will be required to answer Sections A, B, E, F, G, H. Those who identify as women or more closely female will be asked to reply to Section C. Those who identify as men will be asked to reply to Section D. Those who have defined themselves as "other" gender will be asked to attempt to identify whether they need to respond to either C or D according to the best approximation to their personal circumstances or lived experiences.

For more information on the project, please refer to <u>www.inwes.org/gise</u>. In case of questions and queries on this questionnaire, email the Project Manager Dr Sarah Peers <u>sarah.peers@inwes.net</u>. In case of complaints or more general questions about the project, email <u>info@inwes.org</u>.

We deeply appreciate your cooperation!

Criteria to be part of this survey

Are you over the age of 18 AND not yet retired? *

Mark only one oval.

- Other: Yes 0N
- 2. Are you working or studying or have you worked or studied in the STEM sectors? \star

Mark only one oval.

Yes	No	
0	0	(

Maybe

Section A. About you

1. Sociodemographic information

1.1 Your year of birth *

1.2 Please indicate your marital status:

Mark only one oval.

Skip to question 6 Skip to question 5 1 Single/ long-term separated/ divorced 2 Married or in a long-term relationship Other:

Skip to question 6

If married or in a long-term relationship or otherwise appropriate:

For a description of "professional level income", please refer to www.inwes.org/gise-glossary.

GISE Report 2022

©2022 INWES & KWSE

- 3 I am the main breadwinner (i.e. take care of financial obligations) in our 2 Only my spouse/partner earns a professional level income 1 My spouse/partner and I earn a professional level income 4 Neither of us are earning a professional level income 1.2 (contd) Please indicate your situation: Section A continued 1 Mark only one oval. relationship Other:
- 6. 1.3 Please indicate the number of children and other dependents needing care (e.g. elderly and the infirm) in your household:

Mark only one oval.

1 None at all

3 More than 3 but less than 7 2 One to 3

Other:

- 7. 1.4 Please indicate the time you personally spend on family/domestic/caring responsibilities*:
- See Glossary http://inwes.org/GISE_glossary.

Mark only one oval.

1 Less than 8 hours a week because there is little need (e.g. no children residing at home, no care of the elderly, or caring of dependents)

2 More than 8 hours but less than 20 hours 3 More than 20 hours a week

) 4 In our household, family/domestic/caring responsibilities are mainly carried out

) 5 In our household, family/domestic/caring responsibilities are mainly carried out by my husband/wife/partner.

by staff or by extended family members (e.g. nanny, maid, or grandparents, etc.) Other:

Section A continued 2

8. 2.1 Major/main field of study for your first university level degree*: * Mark only one oval.

1 Mathematics and statistics

- 2 Computer and information sciences
- 3 Other computational sciences
- 4 Physical sciences
- 5 Chemical sciences
- 6 Earth and related environmental sciences
- 7 Biological sciences
- 8 Other natural sciences
- 0 Civil engineering
- 10 Electrical engineering, electronic engineering, information engineering
- 11 Mechanical engineering
- 12 Chemical engineering
- 13 Materials engineering
- 14 Medical engineering
- 16 Environmental biotechnology 15 Environmental engineering
- 17 Industrial biotechnology
 - 18 Nano-technology
- 19 Architecture and town planning
- 20 Other engineering and technology
 - 21 Basic medicine
 - - 22 Clinical medicine
- 23 Health sciences
- 24 Medical biotechnology
- 25 Other medical science
- 26 Agriculture, forestry, and fisheries
- 27 Animal and dairy science
- 28 Agricultural biotechnology
- 29 Other agricultural sciences
- 30 Psychology and cognitive sciences
 - 31 Economics and business science
 - 32 Other social sciences
- 33 Other field of STEM (please explain in 4. Comments)

34 Other field not in STEM (please explain in 4. Comments)

If you are not sure your specialism is included, please feel free to take part but please give detailed descriptions in 4. Comments. 2. STEM specialism and employment

9. 2.2 Your current specialism: *

Mark only one oval.

1 Mathematics and statistics

2 Computer and information sciences

3 Other computational sciences

5 Chemical sciences 4 Physical sciences

6 Earth and related environmental sciences

7 Biological sciences

8 Other natural sciences

9 Civil engineering

10 Electrical engineering, electronic engineering, information engineering

11 Mechanical engineering

12 Chemical engineering

13 Materials engineering

14 Medical engineering

15 Environmental engineering

16 Environmental biotechnology

17 Industrial biotechnology

18 Nano-technology

19 Architecture and town planning

20 Other engineering and technology

21 Basic medicine

22 Clinical medicine

23 Health sciences

24 Medical biotechnology

25 Other medical science

26 Agriculture, forestry, and fisheries

27 Animal and dairy science

28 Agricultural biotechnology

29 Other agricultural sciences

30 Psychology and cognitive sciences 31 Economics and business science

32 Other social sciences

33 Other field of STEM (please explain in 4. Comments)

GISE Report 2022

34 Other field not in STEM (please explain in 4. Comments)

- 2.3 Please provide the number of years you have of experience in STEM: (add the number of years of STEM work experience and of postgraduate STEM study).
- 11. 2.4 (a)Please also estimate the number of years since your first university level degree when you have NOT been working in, or studying STEM:
- 12. 2.4 (b) If relevant, indicate the main reasons for this time out of STEM (you can select more than one):

Check all that apply.

- 1 Not STEM qualified
- 2 Childcare/caring for family
 - 3 Unemployment
- 4 Health reasons
- 5 Working in a non-STEM role and sector
- 6 Never out of STEM!
 - Other:
- 13. 2.4 (c) Have you left STEM or considered leaving STEM permanently?

Mark only one oval.

Maybe Q Yes No

©2022 IN

GISE Report 2022

WSF
Ÿ
Ŕ
С Ц
B
Ē
5
~

14.	2.5 Your current employment status: *
	Mark only one oval.
	 1 Employed (including self-employed) Skip to question 16
	 2 Part-time STEM employment and part-time study at postgraduate level (e.g., masters, PhD, etc.) Skip to question 16
	3 Full-time study at postgraduate level
	4 Not employed nor studying
	5 Working in a temporary job while studying or while job hunting
	 6. Full-time study at undergraduate/first degree level
	Other:
	IF NOT employed
15.	2.5 (contd) If not employed, what is your situation:
	Mark only one oval.
	 1 I am seeking the right job, opportunity, etc.
	 2 Work/further study is incompatible with my family/domestic/caring responsibilities
	3 I have chosen not to work/study for the moment
	4 Temporarily unable to work for health reasons
	Other
Skij	p to question 17

IF employed

- 16. 2.5 (contd) If employed, are you employed by
- Mark only one oval.
- 1 Corporate or industry
- 2 University or research institute
- 3 Public services (e.g. education, local government, etc. including
 - NGOs/charities
- 4 Microcompany (start-up or your own small company) Other:

Skip to question 17

Country and Regional Information

17. 3.1 Your main language when working in STEM

Mark only one oval.

- 1 English
 - 2 French
- 3 Japanese
 - 4 Korean
- 5 Mongolian
- 6 Spanish
- 7. Mandarin Chinese
 - 8. Portuguese
 - Other:

18. 3.2 Your nationality/country of origin: *

Mark only one oval.

14 Ashmore and Cartier Islands 30 Bosnia and Herzegovina 10 Antigua and Barbuda 5 American Samoa 22 Bassas da India 18 Bahamas, The 20 Bangladesh 1 Afghanistan 17 Azerbaijan 11 Argentina 21 Barbados 31 Botswana 9 Antarctica 19 Bahrain 12 Armenia 15 Australia 23 Belarus 27 Bermuda 24 Belgium 16 Austria 6 Andorra 8 Anguilla 13 Aruba 29 Bolivia 2 Akrotiri 3 Albania 28 Bhutan 4 Algeria 7 Angola 25 Belize 26 Benin

GISE Report 2022

©2022 INWES & KWSE

32 Bouvet Island

33 Brazil

- 34 British Indian Ocean Territory
- 35 British Virgin Islands
- 36 Brunei
- 37 Bulgaria
- 38 Burkina Faso
- 39 Burma
- 40 Burundi
-) 41 Cambodia
- 42 Cameroon

78 Falkland Islands (Islas Malvinas)

79 Faroe Islands

77 Europa Island

76 Ethiopia

73 Equatorial Guinea

74 Eritrea 75 Estonia

72 El Salvador

70 Ecuador

71 Egypt

- 43 Canada
- 44 Cape Verde
- 45 Cayman Islands
-) 46 Central African Republic
 - 47 Chad
 - 48 Chile
- 49 China

85 French Southern and Antarctic Lands

0 87 Gambia, The

86 Gabon

88 Gaza Strip

90 Germany

91 Ghana

89 Georgia

84 French Polynesia

83 French Guiana

81 Finland 82 France

08 Fiji

- 50 Christmas Island
- 51 Clipperton Island
- 52 Cocos (Keeling) Islands
- 53 Colombia
- 54 Comoros
- 55 Congo, Democratic Republic of the
 - - 56 Congo, Republic of the
 - 57 Cook Islands

93 Glorioso Islands

92 Gibraltar

97 Guadeloupe

98 Guam

99 Guatemala 100 Guernsey

95 Greenland

94 Greece

96 Grenada

- 58 Coral Sea Islands

 - 59 Costa Rica
 - 60 Cote d'Ivoire

 - 61 Croatia
- 62 Cuba
- 63 Cyprus
- 64 Czech Republic

- 65 Denmark

- 66 Dhekelia

68 Dominica

69 Dominican Republic

GISE Report 2022

63

105 Heard Island and McDonald Islands

©2022 INWES & KWSE

102 Guinea-Bissau

01 Guinea

103 Guyana

104 Haiti

- 67 Djibouti

 106 Holy See (Vatican City) 107 Honduras 108 Hong Kong 108 Hong Kong 109 Hungary 110 Icleand 111 India 111 India 112 Indonesia 113 Iran 113 Iran 114 Iraq 111 Isleand 111 Isleand 111 Isleand 111 Isleand 111 Isleand 111 Isleand 112 Jananica 112 Jananica 112 Jananica 112 Jananica 112 Auande Nova Island 128 Kenya 128 Kenya 131 Kyrgyzstan 131 Latvia 	134 Lebanon 135 Lesotho 136 Liberia 137 Libya 131 Libya 133 Liechtenstein 139 Lithuania 140 Luxembourg 141 Macau
--	--

142 Macedonia 142 Macedonia 143 Malawi 144 Malawi 145 Malaysia 146 Maldives 147 Mali 148 Matra 149 Marshall Islands 150 Martinique 151 Maurtinaia 153 Mayotte 154 Mexico 155 Marcinolas 155 Mayotte 155 Micronesia, Federated States of	 156 Moldova 158 Mongolia 159 Montserrat 160 Monocco 160 Monocco 161 Mozambique 161 Mozambique 162 Nauru 165 Nepal 166 Netherlands 167 Netherlands 168 New Caledonia 170 Nicaragua 171 Niger 171 Niger 173 Niue 173 Niue 173 Niue 174 Norfok Island 177 Noreagua 177 Noreagua 177 Noreagua 177 Noreagua 177 Niger 177 Niger 177 Niger 177 Noreagua
---	---

©2022 INWES & KWSE

GISE Report 2022

181 Papua New Guinea 178 Pakistan 180 Panama 179 Palau

214 South Georgia and the South Sandwich Islands

216 Spratly Islands

215 Spain

217 Sri Lanka

218 Sudan

219 Suriname

- 182 Paracel Islands
 - 183 Paraguay
- 184 Peru
- 185 Philippines
- 186 Pitcairn Islands
 - 187 Poland

223 Switzerland

222 Sweden

226 Tajikistan

225 Taiwan

224 Syria

227 Tanzania 228 Thailand

221 Swaziland

220 Svalbard

- 188 Portugal
 - 189 Puerto Rico
 - 190 Qatar
 - 191 Reunion
- 192 Romania
- 193 Russia
- 194 Rwanda
- 195 Saint Helena
- 196 Saint Kitts and Nevis
- 197 Saint Lucia
- 198 Saint Pierre and Miquelon
- 199 Saint Vincent and the Grenadines
 - 200 Samoa
 - 201 San Marino
- 202 Sao Tome and Principe

238 Turks and Caicos Islands

237 Turkmenistan

233 Trinidad and Tobago

229 Timor-Leste

231 Tokelau

230 Togo

232 Tonga

234 Tromelin Island

235 Tunisia 236 Turkey 242 United Arab Emirates

240 Uganda 241 Ukraine

239 Tuvalu

243 United Kingdom

244 United States

246 Uzbekistan

245 Uruguay

248 Venezuela

249 Vietnam

©2022 INWES & KWSE

247 Vanuatu

- 203 Saudi Arabia
- 204 Senegal
- 205 Serbia and Montenegro
 - - 206 Seychelles
- 207 Sierra Leone

 - 208 Singapore

 - 209 Slovakia

 - 210 Slovenia
- 211 Solomon Islands

 - 212 Somalia

65

GISE Report 2022

- 213 South Africa

250 Virgin Islands

20. 3.3 (contd) Please give your current country of work/residence: *

- 251 Wake Island
 - 252 Wallis and Futuna
 - 254 Western Sahara 253 West Bank
 - 255 Yemen
 - 256 Zambia
- 257 Zimbabwe
- 19. 3.3 Country where you are currently employed/living: (If you see your region but * not country, please choose your region. In the next section you will be asked for the country.)

Mark only one oval.

- 1 Africa Skip to question 35 Skip to question 25 2 India
- 3 Japan Skip to question 27
- 4 Mongolia Skip to question 31
- 5 South Korea Skip to question 30
- 6 One of the European or EU countries Skip to question 37
- 7. South or Central America/ Latin America Skip to question 20
- 8. Taiwan Skip to question 41
 - Other:
- - South and America Central

Other circumstances related to local or regional issues that may affect your gender and STEM experiences.

GISE Report 2022

©2022 INWES & KWSE

- Mark only one oval. 14 Costa Rica 15 El Salvador 12 Venezuela 16 Guatemala 17 Honduras 10 Suriname 18 Nicaragua 11 Uruguay 1 Argentina 19 Panama 5 Colombia 8 Paraguay 7 Guyana 13 Belize 6 Ecuador 2 Bolivia 9 Peru 3 Brazil 4 Chile
- 21. 3.4 How many years did you take to complete your university programme to become qualified?

Mark only one oval.

1. From 4 to 6 years

2. Over 6 to 10 years

3. Over 10 years Other:

22. 3.5 If you have a doctorate, where did you obtain your doctorate?

Mark only one oval.

- 1. I do not have a doctorate/PhD/etc.
- 2. South or Central America/Latin America
 - 3. USA or Canada
- 4. Spain
- 5. The rest of Europe
 - Other:
- 23. 3.6 Are you an educator?

Mark only one oval.

- 1. Yes, I am currently a teacher at primary or secondary level education
 - 2. I have been in the past 10 years a teacher at school level
- \bigcirc 3. Yes, I am currrently a lecturer at university or further education level \bigcirc 4. I have been in the past 10 years a lecturer at university or further education
 - 4. I have been in the past 10 years a recturer at university or runnier educa level
- 5. I am not an educator
- 24. 3.7 Are you a decision-maker at government levels?

Mark only one oval.

- 1. Yes, I currently have a decision-making position in government circles
- 2. I have had in the past 10 years a decision-making position in government
- circles 3. No, I am neither currently in a decision-making position nor have been in the
 - past 10 years

Skip to question 41

©2022 INWES & KWSE

GISE Report 2022

Other circumstances related to local or regional issues that may affect your gender and STEM experiences. All questions are strictly for research purposes and as for the rest of the questionnaire, completely anonymous.

India

25. 3.4 a) Please indicate your caste:

Mark only one oval.

1 General 2 OBC 3 SC 4 ST 0 Other: 26. 3.4 b) Please indicate your religion:

Mark only one oval.

 1 Hinduism

 2 Islam

 3 Christianity

 4 Jainism

 5 Buddhism

 6 Sikhism

 7 None

Skip to question 41

Other:

Other circumstances related to local or regional issues that may affect your gender and STEM experiences.

30. 3.4 In which region of Korea are you working? 31. 3.4 a) Please indicate your background: Skip to question 41 27. 3.4 (a) Please indicate your final or highest level of academic study: 29. 3.4 (c) Please indicate your reason for deciding to get into STEM 28. 3.4 (b) Please indicate when you decided to get into STEM 2 Junior high school/Secondary school ③ High school/Sixth Form College ① High school/Secondary school ③ Desired career or employment ④ Technical College/University A Work experience program ② Strongest subject (4) Doctoral course 3 Masters Course Drimary school ② ② Undergraduate Mark only one oval. Mark only one oval. Mark only one oval. ① Interest Other: Other: Other:

Other circumstances related to local or regional issues that may affect your gender and STEM experiences. All questions are strictly for research purposes and as for the rest of the questionnaire,

completely anonymous.

Mongolia

1. Urban (Ulaanbaatar, Darkhan, Erdenet)

Mark only one oval.

3. Rural and nomadic (soum, bag) 2. Regional (center of provinces)

Other:

2 Youngnam region (including Gangwon)

③ Honam region (including Jeju)

G Choongchung region

① Capital (Seoul, Kyoung-gi, Incheon)

Mark only one oval.

22	
20	Ì
ort	
Rer	2
Ξ	ļ
1.	

©2022 INWES & KWSE

Other circumstances related to local or regional issues that may affect

your gender and STEM experiences.

South Korea

Skip to question 41

68

32. 3.4 b) Please indicate if you had a school teacher who positively influenced you the most in STEM

Mark only one oval.

 $\fbox{1.5}$ 1. Yes, they were a female teacher who was new to teaching or under 30 years old

2. Yes, they were a female teacher who was an experienced teacher or more than 30 years old 3. Yes, they were a male teacher who was new to teaching or under 30 years old
 4. Yes, they were a male teacher who was an experienced teacher or more than

30 years old

5. No teacher influenced me positively in STEM

Other:

33. GENDER BARRIERS IN WORKPLACES IN MONGOLIA *

Mark only one oval per row.

	Sexual rassment more ely under ale dership	Sexual rassment more ely under male dership	There is ually a ed for me kind a bribe der male der male	There is ually a ed for me kind a bribe der male dership	t is more ficult to d/or antor mpared women	t is more ficult to id,
① Strongly agree	0	0	0	0	0	0
② Somewhat agree	0	0	0	0	0	0
③ Neutral/undecided	0	0	0	0	0	0
④Somewhatdisagree	0	0	0	0	0	0
⑤ Strongly disagree	0	0	0	0	0	0

©2022 INWES & KWSE

GISE Report 2022

and/or mentor women compared to men	7 Newly hired young people are typically required to work overtime, with little to no extra payment
	0
	0
	0
	0
	0

34. GENDER BARRIERS TO WORKING IN PROFESSIONAL FIELDS IN MONGOLIA *

Mark only one oval per row.

① ② ③ ③ ④ ④ ⑤ Strongly Somewhat Neutral/undecided disagree disagree

1 Women engineers do not work in their main professions or in their professional field	2 Women engineers are not employed in their profession due to the unfunded mandates imposed in ander to meet international standards/requireme rist in their professions in their professions	3 There is no private or public family support for working and/optomoting advanced studies and careers in STEM fields	4 Decisions to have a family and/or children greatly influence my career and professional choices
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

-	
4	
5	
0	
4	
S	
(U)	
-	
9	
20	
0	
Ski	

Other circumstances related to local or regional issues that may affect your gender and STEM experiences. All questions are strictly for research purposes and as for the rest of the questionnaire, completely anonymous.

35. 3.3 (contd.) Please give your current country of work/residence *

Mark only one oval.

Algeria	Angola
-	2
0	0

- 3 Benin
- 4 Botswana

40 Sao Tome and Principe

39 Rwanda

38 Nigeria

43 Sierra Leone

44 Somalia

42 Seychelles

41 Senegal

45 South Africa 46 South Sudan

48 Tanzania

47 Sudan

35 Mozambique

36 Namibia

37 Niger

34 Morocco

- 5 Burkina Faso
 - 7 Cabo Verde 6 Burundi
- 8 Cameroon
- 9 Central African Republic
- 10 Chad
- 11 Comoros
- 12 Congo, Democratic Republic of
 - 13 Congo, Republic of
 -) 14 Cote d'Ivoire 15 Egypt
- 16 Equatorial Guinea
- 17 Eritrea
- 18 Eswatini (Formerly Known as Swaziland)
- 19 Ethiopia
- 20 Gabon
- 21 Gambia, The
 - 22 Ghana
 - 23 Guinea
- 24 Guinea-Bissau

- 25 Kenya
- - 26 Lesotho
-) 27 Liberia
- 28 Libya

29 Madagascar

30 Malawi

31 Mali

32 Mauritania

33 Mauritius

GISE Report 2022

71

Other circumstances related to local or regional issues that may affect your gender and STEM experiences. All questions are strictly for research purposes and as for the rest of the questionnaire,

Skip to question 41

Other:

completely anonymous.

European and the Europe

Union

©2022 INWES & KWSE

21 live in with a large extended family (uncles, aunts, nephews, nieces, grandparents) in one household

1 I live in a polygamous family

Check all that apply.

36. 3.4 Please indicate further family circumstances

52 Western Sahara

51 Uganda

50 Tunisia

49 Togo

54 Zimbabwe

53 Zambia

- 37. 3.3 (contd.) Please give your current country of work/residence * Other (Please explain in 4. Comments) 18 Luxembourg 20 Netherlands Mark only one oval. 17 Lithuania 23 Romania 11 Germany 22 Portugal 13 Hungary 24 Slovakia 25 Slovenia 27 Sweden 7 Denmark 12 Greece 21 Poland 3 Bulgaria 10 France 14 Ireland 19 Malta 2 Belgium 0 6 Czechia 16 Latvia 8 Estonia 9 Finland 26 Spain 1 Austria 4 Croatia 5 Cyprus 15 Italy
- work or study: Check all that apply. 2 I am a person of color 2 I am a nimigrant from outside the EU 2 I am a nimigrant from outside the EU 3 I an LGBTQI 2 I am a person of color 3 I an LGBTQI 2 I am a person of color 3 I an LGBTQI 3 I

3.4 Please indicate any other characteristics that may affect your experiences at

38.

If with a disability

40. 3.4 (contd) If you have a disability or not sure, please explain here briefly:

try question to allow you to make lired.	d, please explain below. For A specialism. Please do NOT J.	
This is free text er comments as req	sues you wish to ad describe your STEN hat may identify you	
to question 41 Any other comments on Section A?	 If there are any other is example, you may wish to include ANY information t 	
Skip	41.	

©2022 INWES & KWSE

GISE Report 2022

42. 4. (contd) Would you consider yourself to be part of the African diaspora? The African Union (AU) defines the African diaspora as consisting: "of people of native African origin living outside the continent, irrespective of their citizenship and nationality and who are willing to contribute to the development of the continent and the building of the African Union".

Perception of 'gender barriers' in STEM *

43.

Mark only one oval.

Yes	No	Other:	

Section B.

For all respondents.

©2022 INWES & KWSE

GISE Report 2022

le oval per ro Strong agre	any Tof	_ss`ts po o st∞be		
ow. 2 igly Somewhat se agree	0	0	0	0
3 Neutral/undecided	0	0	0	0
4 Somewhat disagree	0	0	0	0
5 Strongly disagree	0	0	0	0

a man to get a job in the STEM field with the same qualifications.	5. Being promoted or promoted or tenured principal principal investigator is equally difficult for equally STEM as for men in STEM.	6. Women in STEM generally generally pay for equal work, compared with their equally- qualified male colleagues.
	0	0
	0	0
	0	0
	0	0
	0	0

44. 1.1 Your gender* *

Mark only one oval.

Female Skip to question 46

Male Skip to question 47 Other:

* generally. For this reason, the next question aims to best match you to either Section C (intended primarily for women or those who are perceived to be more feminine) or Section D (intended for men). this option covers many genders. Our focus, for the purpose of this survey only, is to identify the barriers of people who identify more with the female gender or whose experiences reflect those of women themselves and be included in this survey at a basic level. We realise On balance, to which gender do your experiences of STEM, work and study The option for "other" is to allow non-binary genders to identify "Other" gender

Mark only one oval. match closest? 45.

1. Male (for Section D.) Skip to question 47 2. Female or strictly non-binary (for Section C.) These questions are intended for women or those who identify more with women than with men or those who are strictly non-binary. Section C.

GISE Report 2022

©2022 INWES & KWSE

46. Direct/Indirect experience of 'gender barriers' *

Mark only one oval per row.

Women in STEM ing disadvantaged accessing search/work uipment or ormation because e is female.	0	\bigcirc	\bigcirc	0	\bigcirc
Nomen in STEM ng in trouble or ving dy/work/research ject due to her ringe, pregnancy childcare.	0	0	0	0	0

GISE Report 2022

47. (Indirect) Experience of 'gender barriers' in STEM *

Mark only one oval per row.

	1. Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	2. Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.	 Women in STEM being sexually harased (inguistical or physical) or treated unfarity by their colleagues/perers (in colleagues/perers (in colle	4. Women in STEM being sexually harassed inguistical or finguistical or finguistical or finguistical or finguistical or senior classmate or fin university faboratory, project group, etc) or senior
1 Never seen nor from others	0	0	0	0
2 Neither seen nor hear but recognize the possibility	0	0	0	0
3 Heard from others about unknown person's case	0	0	0	0
4 Heard from my colleague or known person's experience	0	0	0	0
5 I have seen someone experience this	0	0	0	0

Women in SI EM ing disadvantaged accessing search/work luipment or formation because e is fermale.	Women in STEM ing in trouble or aving udy/work/research oject due to her arriage, pregnancy child care.
0	0
0	0
0	0
0	0

For all respondents.

Sections for all respondents

GISE Report 2022

©2022 INWES & KWSE

48. Section E. Perception of policy to overcome 'gender barriers' *

©2022 INWES & KWSE

Mark only one oval per row.

Stro agi	r e c.men women women women vonal, to to to the the to to the that are fir fir tr tr to to to to to to to to to to to to to	mary Winners take cial ations) d be	men orn to ally able re for en in a st not pable.	order to tain the and s of a y, the
1 2 ngly Somewha ree agree	0	0	0	0
at Neutral/undecided	0	0	0	0
4 Somewhat disagree	0	0	0	0
5 Strongly disagree	0	0	0	0

CES	
Ĭ	
PE	
AP	

	0
	0
	0
	0
	0
greater power and authority than the wife.	5. I believe gender equality will be fully achieved only if women are given equal opportunities as men.

50. Section G. Perception of gender equality in study, research and work environments *

Mark only one oval per row.

1 2 strongly somewhat s		1. Women are equally granted or entrusted equal oles for their research or project or work performance at the laboratory and at work.	 Wormen equally receive the appraisal or award for the outcorne of their project or research or work. 	 The strictness, objectiveness and importance of the research or task equally respected regardless of the sex/gender of the person in charge. 	 Dealing with funders (those for research projects or those providing the project) in terms of administrative process, is equally fair regardless of the applicant or project leader. 	
2 somewhat agree 3 somewhat issagree 4 somewhat issagree 5 somewhat issagree 4 strongh issagree 5 somewhat issagree 4 strongh issagree 5 somewhat issagree	1 Strongly agree	0	0	0	0	(
3 4 5 Neutral/Undecided Somewhat Strongly Image: Somewhat Somewhat Somewhat Image: Somewhat Somewhat Somewhat Image: Somewhat Image: Somewhat Image: Somewhat Image: Somewhat Image: Somewhat Image: Somewhat Image: Somewhat Image: Somewhat Image: Somewhat Ima	2 Somewhat agree	0	0	0	0	(
4 somewhat disagree 5 strongly disagree 0	3 Neutral/undecided	0	0	0	0	(
strongly disagree disagree of the strongly of	4 Somewhat disagree	0	0	0	0	(
	5 Strongly disagree	0	0	0	0	(

51. Section H. Perception of your STEM career *

 Women receive the same social evaluation and respect as men in respect as men in receintists or engineers (by professor, their colleagues, professor, arsociation, arsociation, arsociation, escientific society, professional institution, etc.) 	6. Marriage, pregnancy or childcare have the same effect on secientist/engineer regardless of their gender/sex on their study, the study of the study of the study of the study of the study of the stud	7. Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female.
	0	0
	0	0
	\cap	0
	0	0
	0	0

rk only one oval per row.	1 Strongly agree	On alance, my TEM career as ogressed ell so far.	l am onsidered / Meagues ader in TEM, or on ader ship.	I have not een assonally fected by nder snifers in FEM.	My family arther riends are, hole, frny STEM areer.	My current Meagues, anagers, ofessors, e as re as r me and y STIEM mere as of hers in the
	2 Somewhat agree	0	0	0	0	0
	3 Neutral/undecided	0	0	0	0	0
	4 Somewhat disagree	0	0	0	0	0
	5 Strongly disagree	0	0	0	0	0

End of Questionnaire	 ♀ We have come to the end of the survey. Thank you for your time and participation!!♀ This survey is part of the 2022 INWES-KWSE Gender perceptions In Science and Engineering (GISE) project; for more information on the project, please refer to www.inwes.org/gise.
If you have any fir please feel free to identify you.	nal comments to make about the Survey or the Questions, add them here. Please do NOT add any information that may

This content is neither created nor endorsed by Google.

Google Forms

A-3. Glossary

- Gender
 - is used in this questionnaire to mean the gender/sex you identify as.
 - The option for "other" is to allow non-binary genders to identify themselves and be included in this survey at a basic level. We realize this option covers many genders. Our focus, for the purpose of this survey only, is to identify the barriers of people who identify more with the female gender or whose experiences reflect those of women generally. In future, larger surveys, we may be able to consider all aspects of gender more widely.
- Working age
 - is a descriptor intended, in the context of this survey, to apply to someone who could be employed as a STEM professional, assuming they have achieved the basic qualification.
- First university level degree
 - is used to mean a bachelor's level degree (BA, BSc, BEng/MEng) or other officially agreed (e.g., by your scientific society or professional institution) equivalent to ISCED 2011 Level 6 achieved through training or relevant work experience.
- Family/domestic/caring responsibilities
 - means the tasks related to caring for children, meal preparation and shopping, laundry and cleaning.
- Affirmative Action
 - is the social policy to protect and support members of minority groups intended to end and correct the effects of a specific form of discrimination.
- Quota System
 - is the social policy which gives preference to protected group members (historically unfairly treated due to their sex, class or race) to correct the inequality in hiring, studying or social participation.

A-4. Report from Assistant Consultant in Africa

INWES) International Network of Women Engineers and Scientists

KWSE-INWES global survey in Africa and in the diaspora: GENERAL REPORT OF ACTIVITIES July-October 2022

As part of the dissemination of the KWSE-INWES global survey on the African continent and in the diaspora, the Assistant Consultant set up a three-month action plan (July, August and September) which was implemented through the following activities:

JULY

The advisory activities carried out in July 2022 were marked by three main priorities:

- Meetings and working meetings internally and externally,
- The development of an action plan for the dissemination of the survey in Cameroon and Africa
- The strategy for its implementation at the national and continental level.

1- Internal work meetings

This were the webinar meetings that were held between Sarah Peers (project manager) and me. These meetings took place in accordance with the following schedule:

July 8: meeting contact, presentation of INWES focal points in Senegal, Germany, Spain, Mongolia and definition of my tasks.

July 11: presentation of the action plan developed for the dissemination of the survey July 15: status report on the progress of the survey dissemination work.

In addition, another meeting was held on July 19 and focused on the presentation of the GISE Assistant/Consultant INWES by Sarah to the other ARN staff for an effective contact and the initiation of a regional strategic coordination plan for achieve the objectives of the project in the Africa zone.

The last internal meeting of July is the one relating to my participation on July 20, 2022, in the webinar marking the 20th anniversary of INWES.

During the online meeting between Paul Bernard Noah (GISE Assistant/Consultant) and Sarah Peers (Project Manager)

External activities

As part of our mission, which is to provide our technical, strategic and operational contribution to the realization of the ongoing survey on the African continent, the following activities were carried out by the GISE assistant consultant:

Survey dissemination campaign

The GISE Assistant/Consultant for Africa conducted a campaign throughout July to disseminate the survey through some social media. For this month of July, the campaign that is currently bearing fruit has taken place through whatSapp and sends it emails in English and in English to more than three hundred recipients. The subject of the emails sent is as follows: Invitation to participate in the INWES-KWSE international survey

External work meetings

The GISE Assistant/Consultant for Africa held several meetings with institutions, associations and other organizations whose work and training is related to STEM. More specifically, I had working discussions with:

- The president of the AIMS Cameroon center, Pr Dr Mama FOUPOUAGNIGNI (July 14, 2022)
- The rector of the ICT University (American school of reference in Central Africa in terms of technology), Pr Jean Emmanuel PONDI (July 20, 2022)
- STEM Incubator & Startups experts from the Mountain University in Banganté, West Region Cameroon (July 22-23, 2022)

- The Secretary General of the investment promotion support network for the development of entrepreneurship (RAPIDE), Georges Armand Kamande (July 17, 2022)
- o Local associations and NGOs working in STEM fields (July 12, 16, 18, 22, 25, 2022)
- o Senior officials from the Ministry of Higher Education (July 20, 2022)
- The Resident Representative of IAI Cameroon Center of Technological Excellence Paul Biya Mr Armand Claude ABANDA who granted me a successful Audience (July 19, 2022) etc.

The GISE Assistant/Consultant for Africa also organized other online working meetings with STEM specialists based in several African countries, resource persons from the African Union, UNESCO, the Pan-African Youth Union, and leaders of the Pan-African Youth Organization from the 54 African countries established throughout the continent to mobilize a large scientific mass around the INWES-KWSE project.

All of these previous working meetings focused on the presentation of the INWES-KWSE project and had the main objective of encouraging the support and participation in quantity and above all in quality of scientists and engineers in the international survey on the perception of the barriers that meet women in STEM fields.

AUGUST

The activities in August took place through webinar sessions with associations working in STEM, resource persons working in the sectors of education, gender, science, health within international organizations such as AUC, UNESCO Abidjan, Africa CDC, communication by telephone and on social networks (e-mail and WhatSapp), information and orientation sessions with associations and institutions working and studying in STEM, meetings in face-to-face with resource people in the field and strategic people for the survey.

WEBINARS AND ONLINE MEETING

08/08/2022

Orientation and exchange webinar session with the NKWANGTECH association of Bafoussam as part of the participation of its members in the INWES-KWSE survey.

Information and exchange webinar session with the association Data Girl Technology - Buea on the theme: role and place of girls in STEM.

11-12/08/2022

Online seminar with PAVNET on the theme: Challenges women and girls face in STEM career development. PAVNET is Panafrican Volunteers Network on the STEM aspects, based in Sierra Leone.

INWES) International Network of Women Engineers and Scientists building a better future worldwide

🐠 대안여성과악기술인외 The Association of Korean Woman Scientists & Engineers

12/08/2022

Webinar session of information and exchange with WETECH of Douala on the theme: role and challenges of WETECH to help raise the level of participation of women and girls in STEM.

20/08/2022

Webinar session of information and exchange with BELOTECH of Ngaoundere on the theme: Contribution and challenges of BELOTECH to help raise the level of participation of women and girls in STEM

22/08/2022

Online meeting with UNESCO Abidjan, Côte d'Ivoire Online meeting with five associations leaders in Congo Brazzaville and Congo Kinshasa

23/08/2022

Online meeting with SAFE LIGHT from Ethiopia. Safe Light has main focus pillars, Digital Literacy, Entrepreneurship, Peacebuilding, Leadership development.

04/08/2022 and 19/08/2022

Exchange meeting (online) with Youth and women department of AUC, Addis Ababa

WORSHOP AND FACE-TO-FACE MEETINGS

03/08/2022, Yaoundé

Information session with women and girl Association Educlik on the challenges of the participation of women and girls in STEM fields. Yaoundé

INWES) International Network of Women Engineers and Scientists

대안여성과약기술인외 The Association of Korean Woman Scientists & Engineers

During with the members and president (Angèle Blandine Messa) of Association Educlick

10/08/2022, Yaoundé

Meeting with the President of the Association of Women Computer Scientists of Cameroon and his team. Yaoundé

11/08/2022, Yaoundé

Meeting with the Secretary General Mr. BODJIO Romance of the association of former scholarship holders in Korea in STEM issues. Yaoundé

11/08/2022, Yaoundé

Meeting with the Coordinator of the Youth Platform of the Internet Governance Forum (IGF). IGF Office, Yaoundé

12-13/08/2022, Kye-Ossi, South region of Cameroon

Information and orientation session with UNESCO weavers of peace. Kyeo-Ossi, south region Cameroon, a cross-border area between Cameroon-Gabon and Equatorial Guinea

Ass.Cons. Paul Bernard the explaining the merits of the KWSE-INWES survey to UNESCO peacemakers.

NWES) International Network of Women Engineers and Scientists

18/08/2022, Yaoundé, Ministry of post and telecommunications

Meeting with the Coordinator of the Women's Platform and the Coordinator of the Youth Platform of the Internet Governance Forum (IGF), Ministry of post and telecommunications. Yaoundé

19-21/0/2022, Kribi, South region of Cameroon

Information and exchange meeting with 40 members of the Cameroonian Leadership Academy including 11 engineers, 12 doctors, 3 mathematicians, 4 computer scientists, 2 architects, 5 social science specialists and 3 people from other fields. Kribi, south region, Cameroon

24/08/2022, Yaoundé, Ministry of External Relations

Briefing with the deputy director of the African union at the ministry of external relations. Ministry of external relations. Yaoundé. The purpose of this meeting was to request the Ministry of External Relations of Cameroon to ask its diplomatic representations in Africa to disseminate in their territories of competence the message of participation in the KWSE-INWES survey.

SEPTEMBER

The activities in September took place online, and face-to-face.

During the month of September, E-mails were sent to NGOs, associations, institutions and individuals specialized in STEM (Ethiopia, Nigeria, Sierra Leone, Zambia, Côte d'Ivoire, Gabon, Angola, Gambia, South Africa, etc)

WEBINARS AND ONLINE MEETING

02/09/2022

Webinar session of information and presentation of the importance of the INWES-KWSE survey with the Engineers of Nile Youth Development Actions

NWES) International Network of Women Engineers and Scientists

04/09/2022

Online meeting with G54 AFRICA

09/09/2022

Participation in the AOTS webinar on leadership programs and organizational changes. During this webinar, I made a brief presentation of the INWES-KWSE survey and invited webinar participants to complete the survey.

13/09/2022

Online meeting with the GIVEN BACK training and tutoring institute, Gabon

13/08/2022

Online exchange with GPN Global solutions LLC International, Zambia.

WORKSHOP AND FACE-TO-FACE MEETINGS

Between September 8 and September 14, 2022, there were informal meetings with engineers, doctors, STEM students.

07/09/2022, Garoua, North region of Cameroon

Information and Orientation Session with UNESCO Peace Weavers, Garoua, North Region Cameroon

14/09/2022, Ebolowa, South region of Cameroon

Information and orientation session with engineers, managers, trainers and learners of the Center of Education and Action community (CEAC) of Ngalane, Ebolowa.

16/09/2022, Yaoundé

Press conference on the presentation of the importance and challenges of the KWSE-INWES survey for Cameroon in particular and for Africa in general.

The conference officials, Paul Bernard Noah (Assistant Consultant INWES for Africa), Madame Kopong (Representative of the Ministry of Posts and Telecommunications), Madame Dontsop Adeline (Representative of the Ministry of Youth)

대한여성과약기술인외 The Association of Korean Woman Scientists & Engineers

A view of the room (representative of the Ministry of External Relations Alexis Djatao, journalists of public & private medias

The following activities were planned to take place in September, but for various reasons, they took place in October. These are more particularly activities related to my work stay in Congo Brazzaville at the invitation of the representative of the UNESCO office in Congo Mrs. Fatoumata Barry Marega for discussions on the subject of the KWSE-INWES survey.

04/10/2022, Brazzaville, cabinet of Congolese head of state

Information and exchange meeting on the GISE project and the KWSE-INWES survey with the director of the computer training center which depends on the computer and research center for the army and security (CFI-CIRAS) Mr Alain Ekondzi. CIRAS is a body attached to the office of the Congolese Head of State. Brazzaville, Congo

05/10/2022

Audience with the Permanent Secretary of the Advisory Council for Civil Society and Non-Governmental Organizations Mr. Céphas Germain Ewangui.

The discussions focused on the presentation of the importance and challenges of the KWSE-INWES survey for the Congo and future prospects. The Advisory Council of Civil Society and Non-Governmental Organizations is a body attached to the Presidency of the Republic of Congo.

At the end of the exchanges, the permanent secretary of the institution proposed holding a conference to present the survey and the GISE project to Congolese civil society organizations and non-governmental organizations working in Congo. This conference led by the INWES assistant consultant for Africa was held on October 7, 2022 at the civil society center in Brazzaville.

06/10/2022, Brazzaville, UNESCO Office in Congo

Information and exchange session on the presentation of the GISE project and the KWSE-INWES survey with the representative of the UNESCO office in Congo and her staff.

Information and exchanges session between Assistant/Consultant INWES for Africa Paul Bernard Noah and the UNESCO representative in Congo Madam Fatoumata Barry Marega accompanied by 5 of her close collaborators including her deputy Mr. Bouka, and her assistant Mrs. Marfiene Omolongo. This session also saw the presence of Antonio Palazuelos, expert in education, community health and risk communication at the WHO Regional Office for Africa in Brazzaville.

Following the presentation made by the INWES assistant consultant for Africa, all UNESCO staff members who took part in this session then took the floor to give their points of view.

Speaking on the subject, the representative of the UNESCO office in Congo Brazzaville Mrs. Fatoumata Barry Marega notably mentioned the cultural aspect of the gender problem in STEM, she mentioned that only 13 to 30% of Congolese women are in STEMs.

She then raised a concern about how to keep girls and women in STEM? and if in STEM do girls go all the way in research. Ms. Marega also stressed the need to put in place initiatives to facilitate the integration of girls and women in STEM fields and to explore the opportunities of girls and women in all STEM-related fields. She indicated that UNESCO Congo works in synergy with specialized ministries and that there is an initiative to honor a woman who works in a STEM field.

The representative of the UNESCO office finally noted that the sample of 100 answers per country was insufficient and she expressed the wish to explore together the convergences of view and if possible that INWES and KWSE come back to the partners before validating investigation. She immediately appointed two of her collaborators to help disseminate the survey to UNESCO Congo's partner network.
INWES) International Network of Women Engineers and Scientists building a better future worldwide

👎 대안여성과약기술인의 The Association of ts & Engineers

06/10/2022, Brazzaville, World Health Organization, Regional Office for Africa

Information meeting at the Africa regional office of the World Health Organization (WHO).

This meeting was held at the headquarters of the WHO Regional Office for Africa in Brazzaville with Mr. Antonio Palazuelos, expert in education and health issues at the WHO Regional Office for Africa, as usual interlocutor.

Group picture: Antonio Palazuelos, expert in education, community health and risk communication at the WHO Regional Office for Africa, Paul Bernard Noah, Assistant/Consultant INWES for Africa and Brusely Likiby, national coordinator of Panycop Congo

The objective was to ask WHO Africa to share the survey with their partner networks in the

fields of science and health.

07/10/2022, Brazzaville

Information session on the participation of Congolese civil society organizations in the INWES-KWSE global survey on Gender in STEM with the support of the advisory council of civil society and non-governmental organizations.

Group picture with the leaders of CSO and NGOs in Congo after the session

This session focused on three key points:

1- presentation by the INWES assistant consultant for Africa of the GISE project and the KWSE-INWES global survey for the attention of officials and leaders of Congolese civil society organizations and invited non-governmental organizations.

2- exchanges (question and answer session) between the INWES assistant consultant for Africa and the officials and leaders of Congolese civil society organizations and nongovernmental organizations present.

3-The participation of Congolese civil society organizations and non-governmental organizations in the KWSE-INWES global survey.

This information and exchange session took place with the support of the advisory council of civil society and non-governmental organizations, a body attached to the presidency of the Republic of Congo.

07/10/2022, Brazzaville

Discussion dinner with Mrs. Gamassa Cindy Isola, Gender and Inclusion Officer at the Congolese Ministry of Posts, Telecommunications and the Digital Economy. Brazzaville.

This meeting was held on the instructions of the Minister concerned who wished to receive in audience the assistant consultant INWES on Monday October 10, 2022. But due to the fact that the assistant consultant INWES had to leave Congo on October 8, the Minister instructed his collaborator Mrs. Gamassa Cindy to have an urgent exchange with the assistant consultant INWES in order to take stock of the issues of the KWSE-INWES survey and the participation of her ministerial department.

It is in this sense that my working dinner took place with Mrs. Gamassa Cindy Isola, gender and inclusion Officer at the Ministry of Posts, Telecommunications and the Digital Economy of Congo.

Encountered difficulties

During this survey conducted on the African continent, the assistant consultant faced some difficulties:

1-The ignorance and misunderstanding that some Africans have of the issues and challenges represented by STEM

2- Problems of access to the internet connection or good quality of the internet network have regularly arisen. In some cases, some people asked for internet connection fees to be able to complete the questionnaire.

3- Many people raised the problem related to the length of the questionnaire (they found it particularly too long). This did not allow some to answer the survey to the end.

Relevance and coherence of the GISE project

Observation 1: The relevance of the project is proven and its goal is consistent with the needs of African countries.

The socio-political and economic context of African countries makes the purpose of the project relevant. Indeed, most African states have made efforts in recent years to facilitate the participation of girls and women in areas and aspects related to STEM and to make them important levers of their public policies. However, this involvement of women in STEM is still challenged by a number of cultural, social, economic and structural stereotypes.

Conducting a survey on perceptions of barriers faced by women in STEM fields was entirely justified.

Observation 2: The project is consistent with the priorities of the African Union and its Member States and is aligned with the programming framework of the national development policies of African countries.

The project is consistent with the priorities identified by the African Union and African States in their strategic frameworks. In concrete terms, the project is aligned with the African Union's 2063 agenda, which makes STEM one of the pillars of the development of African countries. We can cite by way of illustration the "Vision 2035", included in the new National Development Strategy 2020-2030 (SND30) of Cameroon.

The project has positioned itself as a support for effective awareness in Africa with a view to catalyzing and promoting STEM in the service of social inclusion and participatory development.

Observation 3: Africa zone targeting was relevant and appropriate.

The various respondents and the people met within the framework of this project confirm for the most part that the project has come to the point in Africa where the participation of girls and women in the fields of STEM is still relatively low.

Moreover, wanting to involve women more in STEM is a response to the fact that their involvement, their role and their place are still weak and insufficient.

Project effectiveness

The effectiveness of the project must be analyzed in both senses of the term. On the one hand, effectiveness refers to the questioning of the accomplishment of the achievements planned in the initial programming (project document). On the other hand, effectiveness refers to the notion of achieving the results or objectives of the project.

Effectiveness of the project in carrying out the planned activities.

Observation 4: All the activities planned under the action plan drawn up for the dissemination of the GISE project and the survey have been implemented despite the difficulties encountered.

Observation 5: Public authorities, CSOs and NGOs, girls and women have shown a real willingness to participate in the survey and to collaborate with INWES, which has made it possible, on the one hand, to strengthen the position of gender in the social relations, and on the other hand to highlight the important role that women can play in STEM-related fields. In some localities in Africa, the voice of the woman scientist or engineer is not considerably taken into account in the decision-making bodies and her role in several fields is considerably reduced. This role is most often reduced to managing household chores in the home, looking after children or even helping in the plantations of their husbands. Moreover, these women are often victims of social discrimination.

Observation 6: The financial resources provided for carrying out certain activities were not always sufficient. The total survey budget 4500 USD fully funded by the Korean government.

Observation 7: The collaboration with the project manager Dr Sarah Peers and the ARN key members and chair (Vicky, Rufina, Mary, Nelly) was excellent and fruitful in carrying out the survey.

Observation 8: Duration not adapted to the ambitions of the project

Timing is a very important factor in achieving the expected results during the implementation of a project. By taking into account unforeseen events that can lead to delays in the implementation of certain activities (adaptation of targets and understanding of survey issues, etc.), and the aspects of behavior change that take a lot of time, we arrive at the conclusion that more time would have been needed to consolidate the achievements of such a project in general and of this survey in particular. The activities related to this survey were required to be carried out in a relatively very short time frame (03 months), which may also have an impact on the achievement of the expected results.

Observation 9: The project has enabled INWES and KWSE to be highly visible in Africa and reinforced the visibility of the CSOs that took part in the survey.

Observation 10: Women have expressed a real need for capacity building in STEM-related fields and support for their initiatives aimed at encouraging the participation of girls and women in STEM.

Project impact/effect

Impact is the lasting change resulting from the implementation of a project. In other words, what remains when the project is completed? On the one hand, it is a question of measuring the effects of the project which will occur beyond its implementation, in the long term and on the other hand the way in which the lessons learned from the implementation can be used at the national and international level.

The main effect of the project that can be observed in the long term concerns the awareness of STEM issues and the desire to include the effective participation of girls and women in STEM fields in the chapter of individual and collective priorities.

Immediate effects of the survey (what the survey brought during its course)

The KWSE-INWSE Global Survey in Africa brought several positive points during its course in Africa:

1- Awareness of the importance and challenges of STEM

2- The influence of KWSE and INWES including ARN in several countries in Africa and even in the most remote areas (many Africans did not know KWSE and INWES). This survey gave them the opportunity to get to know the two organizations and to see in them a reason for encouragement and hope to facilitate the access and involvement of girls and women in studies and professions related to STEM fields.

3- The survey has helped to equip many people and in particular girls and women on the fundamentals of STEM and on the role and place that are theirs in the fields and aspects related to STEM

4- The survey made INWES and KWSE better known to the authorities of African countries

5- The survey allowed several UNESCO staff members in different African countries to know the existence of the partnership between INWES and UNESCO

6- Even if to date the target number of responses has not yet been reached, the survey has generated real enthusiasm among many Africans, especially women, girls and young people (men and women).

7- The survey has allowed the creation of a large STEM community in Africa which is controlled by the INWES assistant consultant for Africa

Recommendations

In view of the foregoing, as well as the requests made by the respondents, the findings, the observations that were made during this survey by the assistant consultant, the following suggestions should be taken into consideration:

- 1- Implementation of certain initiatives aimed at supporting and facilitating the access and participation of girls and women in all areas related to STEM. These initiatives will be part of the lineage of the impact that the survey will have brought over the duration.
- 2- Organize training and awareness workshops or seminars for men and women on STEM
- 3- Sign partnership or collaboration agreements with organizations and companies in Africa to support gender-related activities in STEM
- 4- Set up a monthly initiative aimed at highlighting girls and women who study or work in STEM.
- 5- Build strong collaboration with the media to help sensitize the masses on the importance of STEM for Africa with the participation of women.
- 6- Possible organization of a global conference to present and validate the regional survey reports.
- 7- Continue to support women's CSOs to continue to act for the full participation of girls and women in STEM-related fields and aspects;

A-5. GISE Lists including Categories for Reference

This appendix provides the lists and categories employed in data cleaning. It also indicates some of the potential issues of providing long lists in different languages.

Full country list

	-			
English	French	Korean	Spanish	Portuguese
1 Afghanistan	1 Afghanistan	1 아프가니스탄	1 Afganistán	1 Afeganistão
2 Akrotiri	2 Akrotiri	2 Akrotiri	2 Akrotiri	2 Akrotiri
3 Albania	3 Albanie	3 알바니아	3 Albania	3 Albânia
4 Algeria	4 Algérie	4 알제리	4 Argelia	4 Argélia
5 American Samoa	5 Samoa américaine	5 미국 사모아	5 Samoa americana	5 Samoa Americano
6 Andorra	6 Andorre	6 안도라	6 Andorra	6 Andorra
7 Angola	7 Angola	7 앙꼴라	7 Angola	7 Angola
8 Anguilla	8 Anguilla	8 애 guilla	8 Anguila	8 Anguilla
9 Antarctica	9 Antarctique	9 남극 대륙	9 Antártida	9 Antártica
10 Antigua and Barbuda	10 Antigua et Barbuda	10 안티구아와 바부 다	10 Antigua y Barbuda	10 Antígua e Barbuda
11 Argentina	11 Argentine	11 아르헨티나	11 Argentina	11 Argentina
12 Armenia	12 Arménie	12 아르페니아	12 Armenia	12 Armênia
13 Aruba	13 Aruba	13 Aruba	13 Aruba	13 Aruba
14 Ashmore and Cartier Islands	14 îles Ashmore et Cartier	14 애쉬 모어와 까르띠에 제도	14 Islas Ashmore y Cartier	14 Ilhas Ashmore e Cartier
15 Australia	15 Australie	15 호주	15 Australia	15 Austrália
16 Austria	16 Autriche	16 오스트리아	16 Austria	16 Áustria
17 Azerbaijan	17 Azerbaïdjan	17 아제르바이잔	17 Azerbaiyán	17 Azerbaijão
18 Bahamas, The	18 Bahamas, le	18 비구히누마구,	18 Bahamas, el	18 Bahamas, o
19 Bahrain	19 Bahrein	19 바-레 인	19 Bahrein	19 Bahrein
20 Bangladesh	20 Bangladesh	20 방글라데시	20 Bangladesh	20 Bangladesh
21 Barbados	21 Barbade	21 바베이도스	21 Barbados	21 Barbados
22 Bassas da India	22 Bassas da India	22 Bassas da India	22 Bassas da India	22 Bastas da Índia
23 Belarus	23 Biélorussie	23 벨로루시	23 Bielorrusia	23 Bielorrússia
24 Belgium	24 Belgique	24 벨기에	24 Bélgica	24 Bélgica
25 Belize	25 Belize	25 벨리즈	25 Belice	25 Belize
26 Benin	26 Bénin	26 베닌	26 Benin	26 Benin

GISE Report 2022

©2022 INWES & KWSE

English	French	Korean	Spanish	Portuguese
27 Bermuda	27 Bermudes	27 버뮤다	27 Bermudas	27 Bermudas
28 Bhutan	28 Bhoutan	28 부탄	28 bután	28 Butão
29 Bolivia	29 Bolivie	29 볼리비아	29 Bolivia	29 Bolívia
30 Bosnia and Herzegovina	30 Bosnie et Herzégovine	30 보스니아와 헤르체고비나	30 Bosnia y Herzegovina	30 Bósnia e Herzegovina
31 Botswana	31 Botswana	31 보츠와나	31 Botswana	31 Botsuana
32 Bouvet Island	32 îles Bouvet	32 BOUVET ISLAND	32 Isla Bouvet	32 Ilha Bouvet
33 Brazil	33 Brésil	33 브라질	33 Brasil	33 Brasil
34 British Indian Ocean. Territory	34 Territoire britannique de l'océan Indien	34 영국 인도양 영토	34 Territorio del Océano Índico británico	34 Território britânico do Oceano Índico
35 British Virgin Islands	35 îles Vierges britanniques	35 영국령 버진 아일랜드	35 Islas Vírgenes Británicas	35 Ilhas Virgens Britânicas
36 Brunei	36 Brunei	36 브루나이	36 Brunei	36 Brunei
37 Bulgaria	37 Bulgarie	37 불가리아	37 Bulgaria	37 Bulgária
38 Burkina Faso	38 Burkina Faso	38 Burkina Faso	38 Burkina Faso	38 Burkina Faso
39 Burma	39 Birmanie	39 버 마-	39 Birmania	39 Birmânia
40 Burundi	40 Burundi	40 부룬디	40 burundi	40 Burundi
41 Cambodia	41 Cambodge	41 캄보디아	41 Camboya	41 Camboja
42 Cameroon	42 Cameroun	42 카메룬	42 Camerún	42 Camarões
43 Canada	43 Canada	43 캐나다	43 Canadá	43 Canadá
44 Cape Verde	44 Cape Verde	44 케이프베르데	44 Cabo Verde	44 Cape Verde
45 Cayman Islands	45 îles Caïmans	45 케이맨 제도	45 Islas Caimán	45 Ilhas Cayman
46 Central African Republic	46 République centrafricaine	46 중앙 아프리카 공화국	46 República Centroafricana	46 República da África Central
47 Chad	47 Chad	47 차드	47 Chad	47 Chad
48 Chile	48 Chili	48 칠 레	48 Chile	48 Chile
49 China	49 Chine	49 중국	49 China	49 China
50 Christmas Island	50 îles de Noël	50 크리스마스 섬	50 Isla de Navidad	50 Ilha Christmas
51 Clipperton Island	51 île de Clipperton	51 Clipperton Island	51 Isla Clipperton	51 Ilha de Clipperton
52 Cocos (Keeling) Islands	52 îles Cocos (Keeling)	52 코코 (Keeling) 섬	52 Islas Cocos (Keeling)	52 ilhas Cocos (Keeling)
53 Colombia	53 Colombie	53 콜롬비아	53 Colombia	53 Colômbia
54 Comoros	54 comores	54 코 모로	54 Comoros	54 Comores
55 Congo, Democratic Republic of the	55 Congo, République démocratique de la	55 콩고, 민주 공화국	55 Congo, República Democrática del	55 Congo, República Democrática do
56 Congo, Republic of the	56 Congo, République du	56 콩고, 공화국	56 Congo, República del	56 Congo, República do
57 Cook Islands	57 îles Cook	57 쿡 제도	<i>57</i> Islas Cook	57 Ilhas Cook
58 Coral Sea Islands	58 îles de la mer corail	58 코랄 바다 섬	58 Islas del Mar de Coral	58 ilhas marinhas de coral

GISE Report 2022

©2022 INWES & KWSE

English	French	Korean	Spanish	Portuguese
59 Costa Rica	59 Costa Rica	59 코스타리카	59 Costa Rica	59 Costa Rica
60 Cote d'Ivoire	60 Côte d'Ivoire	60 Cote d'Ivoire	60 cote de marfil	60 Cote d'firire
61 Croatia	61 Croatie	61 코로아티아	61 Croacia	61 Croácia
62 Cuba	62 Cuba	62 쿠바	62 Cuba	62 Cuba
63 Cyprus	63 Chypre	63 키프로스	63 Chipre	63 Chipre
64 Czech Republic	64 République tchèque	64 체코 공화국	64 República Checa	64 República Tcheca
65 Dennark	65 Danemark	65 덴마크	65 Dinamarca	65 Dinamarca
66 Dhekelia	66 Dhekelia	66 Dhekelia	66 Dhekelia	66 Dhekelia
67 Djibouti	67 Djibouti	67 지부터	67 Djibouti	67 Djibuti
68 Dominica	68 Dominique	68 도미니카	68 Dominica	68 Dominica
69 Dominican Republic	69 République dominicaine	69 도미니카 공화국	69 República Dominicana	69 República Dominicana
70 Ecuador	70 Equateur	70 에콰도르	70 Ecuador	70 Equador
71 Egypt	71 Égypte	71 이 집트	71 Egipto	71 Egito
72 El Salvador	72 El Salvador	72 엘살바도르	72 El Salvador	72 El Salvador
73 Equatorial Guinea	73 Guinée équatoriale	73 적도기니	73 Guinea ecuatorial	73 Guiné Equatorial
74 Eritrea	74 Érythrée	74 에 리트레아	74 Eritrea	74 Eritreia
75 Estonia	75 Estonie	75 에스토니아	75 Estonia	75 Estônia
76 Ethiopia	76 Éthiopie	76 에티오푀아	76 Etiopía	76 Etiópia
77 Europa Island	77 Europa Island	77 유로파 섬	77 Europa Island	77 Ilha Europa
78 Falkland Islands (Islas Malvinas)	78 îles Falkland (Islas Malvinas)	78 포클렌드 제도 (Istas Malvinas)	78 Islas Malvinas (Islas Malvinas)	78 Ilhas Falkland (Islas Malvinas)
79 Faroe Islands	79 îles Féroé	79 Faroe Islands	79 Islas Feroe	79 Ilhas Faroe
80 Fiji	80 Fidji	80 페지	80 Fiji	80 Fiji
81 Finland	81 Finlande	81 푄란드	81 Finlandia	81 Finlândia
82 France	82 France	82 프랑스	82 Francia	82 França
83 French Guiana	83 Guyane française	83 프랑스 기아나	83 Guayana Francesa	83 Guiana Francesa
84 French Polynesia	84 Polynésie française	84 프랑스 폴리네시아	84 Polinesia francesa	84 Polinésia francesa
85 French Southern and Antarctic Lands	85 terres françaises du sud et de l'Antarctique	85 프랑스 남부 및 남극 대륙	85 tierras francesas del sur y antártica	85 terras francesas do sul e antártico
86 Gabon	86 Gabon	86 가 분-	86 Gabón	86 Gabão
87 Gambia, The	87 Gambie, le	87 쟙비아,	87 Gambia, el	87 Gâmbia, o
88 Gaza Strip	88 Gaza Strip	88 가자 지구	88 Franja de Gaza	88 Gaza Strip
89 Georgia	89 Géorgie	89 조지아	89 Georgia	89 Geórgia

GISE Report 2022

©2022 INWES & KWSE

English	French	Korean	Spanish	Portuguese
90 Germany	90 Allemagne	90 독일	90 Alemania	90 Alemanha
91 Ghana	91 Ghana	91 가나	91 Ghana	91 Gana
92 Gibraltar	92 Gibraltar	92 지브롤터	92 Gibraltar	92 Gibraltar
93 Glorioso Islands	93 îles Glorioso	93 글로리 오소 제도	93 Islas Glorioso	93 Ilhas Glorioso
94 Greece	94 Grèce	94 그리스	94 Grecia	94 Grécia
95 Greenland	95 Groenland	95 그린란드	95 Groenlandia	95 Groenlândia
96 Grenada	96 Grenade	96 그레나다	96 Granada	96 Granada
97 Guadeloupe	97 Guadeloupe	97 과드루프	97 Guadeloupe	97 Guadalupe
98 Guam	98 Guam	86 뀸	98 Guam	98 Guam
99 Guatemala	99 Guatemala	99 과테말라	99 Guatemala	99 Guatemala
100 Guernsey	100 Guernesey	100 건지	100 Guernsey	100 Guernsey
101 Guinea	101 Guinée	101 기내	101 Guinea	101 Guiné
102 Guinea-Bissau	102 Guinée-Bissau	102 기니 비시	102 Guinea-Bissau	102 Guiné-Bissau
103 Guyana	103 Guyana	103 가이아나	103 Guyana	103 Guiana
104 Haiti	104 Haïti	104 아이토]	104 Haití	104 Haiti
105 Heard Island and McDonald Islands	105 îles entendus et îles McDonald	105 Heard Island & McDonald Islands	105 Heard Island y McDonald Islands	105 Heard Island e McDonald Islands
106 Holy See (Vatican City)	106 Holy See (Vatican City)	106 Holy See (바티칸 시티)	106 Santa Sede (Ciudad del Vaticano)	106 Santa See (Cidade do Vaticano)
107 Honduras	107 Honduras	107 온두라스	107 Honduras	107 Honduras
108 Hong Kong	108 Hong Kong	108 홍콩	108 Hong Kong	108 Hong Kong
109 Hungary	109 Hongrie	109 형가리	109 Hungría	109 Hungria
110 Iceland	110 Islande	110 아이슬란드	110 Islandia	110 Islândia
111 India	111 Inde	111 인도	111 India	111 Índia
112 Indonesia	112 Indonésie	112 인도네시아	112 Indonesia	112 Indonésia
113 Iran	113 Iran	113 이란	113 Irán	113 Irã
114 Iraq	114 Irak	114 이라고	114 Iraq	114 Iraque
115 Ireland	115 Irlande	115 아일랜드	115 Irlanda	115 Irlanda
116 Isle of Man	116 ISLE DE MAN	116 인간 섬	116 Isla del hombre	116 Ilha do homem
117 Israel	117 Israël	117 이스라엘	117 Israel	117 Israel
118 Italy	118 Italie	118 이탈리아	118 Italia	118 Itália
119 Jamaica	119 Jamaïque	119 자메이카	119 Jamaica	119 Jamaica
120 Jan Mayen	120 Jan Mayen	120 Jan Mayen	120 Jan Mayen	120 Jan Mayen
121 Japan	121 Japon	121 일본	121 Japón	121 Japão

©2022 INWES & KWSE

GISE Report 2022

English	French	Korean	Spanish	Portuguese
122 Jersey	122 Jersey	122 제지	122 Jersey	122 Jersey
123 Jordan	123 Jordanie	123 요르단	123 Jordan	123 Jordan
124 Juan de Nova Island	124 Juan de Nova Island	124 Juan de Nova Island	124 Isla Juan de Nova	124 Juan de Nova Island
125 Kazakhstan	125 Kazakhstan	125 카자흐스탄	125 Kazajstán	125 Cazaquistão
126 Kenya	126 Kenya	126 케냐	126 Kenia	126 Quênia
127 Kiribati	127 Kiribati	127 키리 바티	127 Kiribati	127 Kiribati
128 Korea, North	128 Corée, nord	128 한국, 북쪽	128 Corea, Norte	128 Coréia, Norte
129 Korea, South	129 Corée, Sud	129 한국, 남쪽	129 Corea, Sur	129 Coréia, Sul
130 Kuwait	130 Koweït	130 쿠웨이트	130 Kuwait	130 Kuwait
131 Kyrgyzstan	131 Kirghizistan	131 키르기스스탄	131 Kirguistán	131 Quirguistão
132 Laos	132 Laos	132 라오스	132 Laos	132 Laos
133 Latvia	133 Lettonie	133 라트비아	133 Letonia	133 Letônia
134 Lebanon	134 Liban	134 레바논	134 Líbano	134 Líbano
135 Lesotho	135 Lesotho	135 레소토	135 Lesotho	135 Lesoto
136 Liberia	136 Libéria	136 라이베리아	136 Liberia	136 Libéria
137 Libya	137 Libye	137 리비아	137 Libia	137 Líbia
138 Liechtenstein	138 Liechtenstein	138 리히텐슈타인	138 Liechtenstein	138 Liechtenstein
139 Lithuania	139 Lituanie	139 리투아니아	139 Lituania	139 Lituânia
140 Luxembourg	140 Luxembourg	140 룩솀부르크	140 Luxemburgo	140 Luxemburgo
141 Macau	141 Macao	141 마카오	141 Macao	141 Macau
142 Macedonia	142 Macédoine	142 마케도니아	142 Macedonia	142 Macedônia
143 Madagascar	143 Madagascar	143 마다가스카르	143 Madagascar	143 Madagascar
144 Malawi	144 Malawi	144 말라위	144 Malawi	144 Malawi
145 Malaysia	145 Malaisie	145 말레이시아	145 Malasia	145 Malásia
146 Maldives	146 Maldives	146 몰디브	146 Maldivas	146 Maldivas
147 Mali	147 Mali	147 말리	147 Malí	147 Mali
148 Malta	148 Malte	148 몰타	148 Malta	148 Malta
149 Marshall Islands	149 îles Marshall	149 마샬 제도	149 Islas Marshall	149 Ilhas Marshall
150 Martinique	150 Martinique	150 마르티니코	150 Martinica	150 Martinica
151 Mauritania	151 Mauritanie	151 포리타니아	151 Mauritania	151 Mauritânia
152 Mauritius	152 Maurice	152 모리셔스	152 Mauricio	152 Maurício
153 Mayotte	153 Mayotte	153 Mayotte	153 Mayotte	153 Mayotte
154 Mexico	154 Mexique	154 멕시코	154 México	154 México

©2022 INWES & KWSE

GISE Report 2022

English	French	Korean	Spanish	Portuguese
155 Micronesia, Federated States of	155 Micronésie, États fédérés de	155 미크로네시아, 연합 상태	155 Micronesia, estados federados de	155 Micronésia, estados federados de
156 Moldova	156 Moldavie	156 몰도바	156 Moldavia	156 Moldávia
157 Monaco	157 Monaco	157 모나코	157 Mónaco	157 Mônaco
158 Mongolia	158 Mongolie	158 몽꼴	158 Mongolia	158 Mongólia
159 Montserrat	159 Montserrat	159 Montserrat	159 Montserrat	159 Montserrat
160 Morocco	160 Maroc	160 모로코	160 Marruecos	160 Marrocos
161 Mozambique	161 Mozambique	161 모쟘비크	161 Mozambique	161 Moçambique
162 Namibia	162 Namibie	162 나미비아	162 Namibia	162 Namíbia
163 Nauru	163 Nauru	163 나우루	163 Nauru	163 Nauru
164 Navassa Island	164 Navassa Island	164 Navassa Island	164 Isla Navassa	164 Ilha Navassa
165 Nepal	165 Népal	165 네팔	165 Nepal	165 Nepal
166 Netherlands	166 Pays-Bas	166 네덜란드	166 Países Bajos	166 Holanda
167 Netherlands Antilles	167 Antilles néerlandaises	167 네덜란드 앤 틸리 스	167 Antillas de los Países Bajos	167 Holanda Antilhas
168 New Caledonia	168 Nouvelle-Calédonie	168 뉴 칼레도니아	168 Nueva Caledonia	168 Nova Caledônia
169 New Zealand	169 Nouvelle-Zélande	169 뉴질랜드	169 Nueva Zelanda	169 Nova Zelândia
170 Nicaragua	170 Nicaragua	170 니카라과	170 Nicaragua	170 Nicarágua
171 Niger	171 Niger	171 니제르	171 Níger	171 Níger
172 Nigeria	172 Nigéria	172 나이지리아	172 Nigeria	172 Nigéria
173 Niue	173 niue	173 Niue	173 niue	173 NIUE
174 Norfolk Island	174 île de Norfolk	174 노력 섬	174 Isla Norfolk	174 Ilha de Norfolk
175 Northern Mariana Islands	175 îles de Mariana du Nord	175 북부 마리아나 제도	175 Islas Marianas del Norte	175 Ilhas do Norte da Mariana
176 Norway	176 Norvège	176 노르웨이	176 Noruega	176 Noruega
177 Oman	177 Oman	177 오만	177 Omán	177 Omã
178 Pakistan	178 Pakistan	178 파키스탄	178 Pakistán	178 Paquistão
179 Palau	179 Palau	179 팔라우	179 Palau	179 Palau
180 Panama	180 Panama	180 파나마	180 Panamá	180 Panamá
181 Papua New Guinea	181 Papouasie-Nouvelle-Guinée	181 파푸아 뉴기니	181 Papua Nueva Guinea	181 Papua Nova Guiné
182 Paracel Islands	182 îles Paracel	182 Paracel Islands	182 Islas Paracel	182 Ilhas Paracel
183 Paraguay	183 Paraguay	183 파라과이	183 Paraguay	183 Paraguai
184 Peru	184 Pérou	184 페루	184 Perú	184 Peru
185 Philippines	185 Philippines	185 꾈리핀	185 Filipinas	185 Filipinas
186 Pitcairn Islands	186 îles Pitcairn	186 Pitcairn Islands	186 Islas Pitcairn	186 Ilhas Pitcairn
187 Poland	187 Pologne	187 폴란드	187 Polonia	187 Polônia

GISE Report 2022

©2022 INWES & KWSE

103

-

English	French	Korean	Spanish	Portuguese
188 Portugal	188 Portugal	188 포르투갈	188 Portugal	188 Portugal
189 Puerto Rico	189 Porto Rico	189 푸에르토 리코	189 Puerto Rico	189 Porto Rico
190 Qatar	190 Qatar	190 카타르	190 Qatar	190 Catar
191 Reunion	191 Réunion	191 동창회	191 Reunión	191 Reunião
192 Romania	192 Roumanie	192 루마니아	192 Rumania	192 Romênia
193 Russia	193 Russie	193 러시아	193 Rusia	193 Rússia
194 Rwanda	194 Rwanda	194 르완다	194 Ruanda	194 Ruanda
195 Saint Helena	195 Saint Helena	195 세인트 헬레나	195 Santa Helena	195 Saint Helena
196 Saint Kitts and Nevis	196 Saint Kitts et Nevis	196 세인트키츠와 네비스	196 Saint Kitts y Nevis	196 Saint Kitts e Nevis
197 Saint Lucia	197 Sainte-Lucie	197 세인트 루시아	197 Santa Lucía	197 Saint Lucia
198 Saint Pierre and Miquelon	198 Saint Pierre et Miquelon	198 Saint Pierre 2 Miquelon	198 Saint Pierre y Miquelon	198 Saint Pierre e Miquelon
199 Saint Vincent and the Grenadines	199 Saint Vincent et les grenadines	199 세인트 빈센트와 그레나딘	199 Saint Vincent y las Granadinas	199 São Vincent e Granadinas
200 Samoa	200 Samoa	200 사모아	200 samoa	200 samoa
201 San Marino	201 San Marino	201 San Marino	201 San Marino	201 San Marino
202 Sao Tome and Principe	202 Sao Tome and Principe	202 Sao Tome 과 Principe	202 SAO TOME Y PRINCIPE	202 São tomo e príncipe
203 Saudi Arabia	203 Arabie saoudite	203 사우디 아라바비아	203 Arabia Saudita	203 Arábia Saudita
204 Senegal	204 Sénégal	204 세네같	204 Senegal	204 Senegal
205 Serbia and Montenegro	205 Serbie et Monténégro	205 세르비아와 몬테네그로	205 Serbia y Montenegro	205 Sérvia e Montenegro
206 Seychelles	206 Seychelles	206 세이 셸	206 Seychelles	206 Seychelles
207 Sierra Leone	207 Sierra Leone	207 시에라 리온	207 Sierra Leona	207 Serra Leoa
208 Singapore	208 Singapour	208 싱가포르	208 Singapur	208 Cingapura
209 Slovakia	209 Slovaquie	209 슬로바키아	209 Eslovaquia	209 Eslováquia
210 Slovenia	210 Slovénie	210 슬로베니아	210 Eslovenia	210 Eslovênia
211 Solomon Islands	211 îles Salomon	211 솔로몬 제도	211 Islas Salomón	211 Ilhas Salomão
212 Somalia	212 Somalie	212 소말리아	212 Somalia	212 Somália
213 South Africa	213 Afrique du Sud	213 남아프리카	213 Sudáfrica	213 África do Sul
214 South Georgia and the South Sandwich Islands	214 Géorgie du Sud et îles Sandwich du Sud	214 사우스 조지아와 사우스 샌드위치 제도	214 Georgia del Sur y las Islas Sándwiches del Sur	214 Geórgia do Sul e as Ilhas Sandwich South
215 Spain	215 Espagne	215 스페인	215 España	215 Espanha
216 Spratly Islands	216 îles Spratly	216 Spratly Islands	216 Islas Spratly	216 Ilhas Spratly
217 Sri Lanka	217 Sri Lanka	217 스리랑카	217 Sri Lanka	217 Sri Lanka
218 Sudan	218 Soudan	218 수단	218 Sudán	218 Sudão
219 Suriname	219 Suriname	219 수리남	219 Surinam	219 Suriname

GISE Report 2022

©2022 INWES & KWSE

English	French	Korean	Spanish	Portuguese
220 Svalbard	220 Svalbard	220 Svalbard	220 Svalbard	220 Svalbard
221 Swaziland	221 Swaziland	221 스와질란드	221 Swazilandia	221 Suazilândia
222 Sweden	222 Suède	222 스웨덴	222 Suecia	222 Suécia
223 Switzerland	223 Suisse	223 스위스	223 Suiza	223 Suíça
224 Syria	224 Syrie	224 시리아	224 Siria	224 Síria
225 Taiwan	225 Taiwan	225 대만	225 Taiwán	225 Taiwan
226 Tajikistan	226 Tadjikistan	226 타지키스탄	226 Tayikistán	226 Tajiquistão
227 Tanzania	227 Tanzanie	227 탄자니아	227 Tanzania	227 Tanzânia
228 Thailand	228 Thaïlande	228 태국	228 Tailandia	228 Tailândia
229 Timor-Leste	229 Timor-Leste	229 티모르-레스테	229 Timor-Leste	229 Timor-Leste
230 Togo	230 Togo	230 토고	230 Togo	230 TOGO
231 Tokelau	231 Tokelau	231 Tokelau	231 Tokelau	231 Tokelau
232 Tonga	232 Tonga	232 통가	232 Tonga	232 Tonga
233 Trinidad and Tobago	233 Trinidad et Tobago	233 트리니다드 토바고	233 Trinidad y Tobago	233 Trinidad e Tobago
234 Tromelin Island	234 île de troméline	234 트로 멜린 섬	234 Isla Tromelin	234 Ilha Tromelina
235 Tunisia	235 Tunisie	235 튀니지	235 Túnez	235 Tunísia
236 Turkey	236 Turquie	236 터키	236 Turquía	236 Turquia
237 Turkmenistan	237 Turkménistan	237 투르크 메니스탄	237 Turkmenistán	237 Turquemenistão
238 Turks and Caicos Islands	238 Turcs et îles Caicos	238 터키와 카이코스 제도	238 Islas Turcas y Caicos	238 Ilhas Turks e Caicos
239 Tuvalu	239 Tuvalu	239 투발루	239 Tuvalu	239 Tuvalu
240 Uganda	240 Ouganda	240 우간다	240 Uganda	240 Uganda
241 Ukraine	241 Ukraine	241 우코라이나	241 Ucrania	241 Ucrânia
242 United Arab Emirates	242 Émirats arabes unis	242 아랍 에미리트 연합	242 Emiratos Árabes Unidos	242 Emirados Árabes Unidos
243 United Kingdom	243 Royaume-Uni	243 영국	243 Reino Unido	243 Reino Unido
244 United States	244 États-Unis	244 미국	244 Estados Unidos	244 Estados Unidos
245 Uruguay	245 Uruguay	245 우루과이	245 Uruguay	245 Uruguai
246 Uzbekistan	246 Ouzbékistan	246 우즈베키스탄	246 Uzbekistán	246 Uzbequistão
247 Vanuatu	247 Vanuatu	247 바누아투	247 Vanuatu	247 Vanuatu
248 Venezuela	248 Venezuela	248 베네수엘라	248 Venezuela	248 Venezuela
249 Vietnam	249 Vietnam	249 베트남	249 Vietnam	249 Vietnã
250 Virgin Islands	250 îles Vierges	250 버진 아일랜드	250 Islas Vírgenes	250 Ilhas Virgens
251 Wake Island	251 Wake Island	251 웨이크 아일랜드	251 Wake Island	251 Wake Island
252 Wallis and Futuna	252 Wallis et Futuna	252 Wallis 와 Futuna	252 Wallis y Futuna	252 Wallis e Futuna

©2022 INWES & KWSE

GISE Report 2022

English	French	Korean	Spanish	Portuguese
253 West Bank	253 Cisjordanie	253 웨스트 뱅크	253 Cisjordania	253 Cisjordânia
254 Western Sahara	254 Sahara occidental	254 서부 사하라	254 Sahara occidental	254 Sahara Ocidental
255 Yemen	255 Yémen	255 예멘	255 Yemen	255 Iêmen
256 Zambia	256 Zambie	256 잠비아	256 Zambia	256 Zâmbia
257 Zimbabwe	257 Zimbabwe	257 짐바브웨	257 Zimbabwe	257 Zimbábue

©2022 INWES & KWSE

GISE Report 2022

CES	
NDI	
E	
AP	

Summary of Survey Data

Please note, all detailed statistical analysis data is available upon request.

Male*	26	788	115	14	18	9	967
Female*	34	441	159	128	131	42	935
Social sciences (P)	1	82	86	6	7	12	194
Other (incmisc) (0)	б	48	17	13	7	9	94
Natural sciences (N)	10	154	17	44	56	4	285
Math & computing (M)	3	491	59	5	17	8	583
Health & medicine (H)	24	53	32	38	21	0	168
Engineering (E)	18	384	36	33	40	16	527
Agricultural & Animal (A)	2	22	27	9	1	2	60
Age range (year of birth)	1950-2000	1942-2004	1950-2003	1949-1998	1954-1993	1953-1998	1942-2004
All responses	81	1461**	279**	153	150	99	2190
TOTAL INCLUDED	61	1234	274	145	149	48	1911
Questionnaire version	Chinese	English	French	Japanese	Korean	Spanish	TOTALS

*Regarding Gender, in addition to the number of females and males given here, there were also 9 responses from individuals who identify as non-binary. ** Including late responses, All Responses for the English and the French questionnaires was 1704 and 712 respectively, meaning a grand total of 2866.

ALI.	Americas							57	12
ALL.	Europe							63	14
ALL.	MENA							38	7
ALL.	ARN							417	34
ALL.	APNN							1330	12
Grand	Total	61	1234	274	145	149	48	1911	f INWES
Rest of	World	2	95	2	1		1	101	g regions o
	Taiwan	59	3					62	he followin
South	Korea		7			149		156	se were in t
South	America		5				38	43	and the
	Japan		2		144			146	79
	India		902					902	ed
	Europe		40	16			6	65	untries reach
	Africa		180	256				436	umber of Cou
Ouestionnaire	version	Chinese	English	French	Japanese	Korean	Spanish	TOTALS	TOTAL Nu

©2022 INWES & KWSE

GISE Report 2022

Appendix B: Detailed Sta	atistical Comparisons
I ne use of t-tests assumes both that variable. For some of the 3	t the normanty of the distribution of the variable to be compared, and the nomogeneity of the variance of 32 variables to be compared, one of these two conditions or even both conditions are not validated.
There are alternative tests when Alternative tests are displayed variances, based on the indicati	n these situations arise: such as a t-test with heterogeneous variance or a Wilcoxon/Mann-Whitney test. 1 as appropriate. p-values reported correspond to the test for either homogeneous or heterogeneous ion by the Levene's Test.
When both parametric (t-tests) The Mann-Whitney test, howev	and non-parametric (Mann-Whitney) tests are significant, the parametric alternative should be reported. ver, should be prioritized if at least one of the samples is of size < 30 .
Note on CD: the combined re As men responded to Section I be able to compare responses. ⁷	ssponses to Section C and Section D D and women (and all non-binary) to Section C, the responses to these sections have been combined to This is indicated below by statements starting with CD .
B-1. By Gender	
The tables below are the results on the sample size.	of gender comparisons across the whole set of responses using T-tests or Mann-Whitney tests, depending
In the tables below, any data in hence indicating the averages a	In BLUE indicates where the p-value (the probability that the results occurred by chance) is very low, and standard deviations are not by chance (alpha = 0.05).
Data in GREEN and RED ind statements where women are n than women.	licate where the mean differences between the men and women are notable. Data in GREEN are for nore likely to disagree than men. Data in RED are for statements where men are more likely to disagree
Where the mean difference val than where there are no obvious disagreement.	lues were between 0.75 and -0.5, these results are generally not highlighted in RED or GREEN, other s notable results, when the RED and GREEN are used to indicate the statements where there was highest
GISE Report 2022	©2022 INWES & KWSE

Global (all responses) - women vs. men

Sample sizes are 944 for female/non-binary and 966 for male: t-tests are prioritized here.

			=	ndependel	nt Samples	Test: T-T	ests							
	Leven	e's Test for Equality of Variances		Descriptiv	e Statistics				t-test for	Equality of	Means			Mann- Whitney U
Statements	L	Sig. Result	Female/ non- binary - Mean	Female/ non- binary - SD	Male - Mean	Male - SD	÷	df	Significance - Two-Sided p	Mean Difference	Std. Error Difference	95% C.I. of Difference - Lower	95% C.I. of Difference - Upper	Asymp. Sig. (2-tailed)
B1 Girls and t	92.33	0.00 Equal variances not assumed	2.30	1.33	1.73	1.05	10.40	1796.04	0.00	0.57	0.05	0.46	0.68	<.001
B2 Female st	42.59	0.00 Equal variances not assumed	2.30	1.26	1.81	1.09	9.04	1859.91	0.00	0.49	0.05	0.38	0.59	0.21
B3 Women in	92.56	0.00 Equal variances not assumed	2.64	1.33	1.89	1.12	13.31	1837.83	0.00	0.75	0.06	0.64	0.86	0.0
B4 It is equally	0.04	0.83 Equal variances assumed	2.57	1.32	2.36	1.34	3.44	1908.00	0.00	0.21	0.06	0.09	0.33	0.27
B5 Being pror	39.86	0.00 Equal variances not assumed	2.53	1.35	2.16	1.20	6.30	1874.33	0.00	0.37	0.06	0.25	0.48	0.0
B6 Women in	94.53	0.00 Equal variances not assumed	2.55	1.36	1.90	1.12	11.28	1829.06	0.00	0.64	0.06	0.53	0.76	0.0
CD1 Women	129.32	0.00 Equal variances not assumed	2.74	1.35	1.77	1.05	17.44	1778.90	0.0	0.97	0.06	0.86	1.08	×.00
CD2 Women	103.48	0.00 Equal variances not assumed	2.69	1.34	1.81	1.08	15.77	1808.45	0.0	0.88	0.06	0.77	0.99	.00.
CD3 Women	68.92	0.00 Equal variances not assumed	2.87	1.37	2.11	1.15	13.01	1834.91	0.00	0.75	0.06	0.64	0.87	0.0
CD4 Women	45.06	0.00 Equal variances not assumed	2.87	1.34	2.13	1.17	12.91	1860.36	0.00	0.75	0.06	0.63	0.86	0.0
CD5 Women	62.08	0.00 Equal variances not assumed	2.31	1.29	1.77	1.09	10.01	1843.14	0.0	0.55	0.05	0.44	0.65	0.0
CD6 Women	6.25	0.01 Equal variances not assumed	3.09	1.32	2.28	1.29	13.62	1903.62	0.0	0.82	0.06	0.70	0.93	00.
E1 I believe th	44.15	0.00 Equal variances not assumed	2.02	1.05	1.48	0.78	12.60	1735.95	0.00	0.54	0.04	0.45	0.62	0.01
E2 It is crucia	37.21	0.00 Equal variances not assumed	1.48	0.79	1.66	0.95	-4.68	1864.25	0.00	-0.19	0.04	-0.27	-0.11	0.06
E3 It is approp	95.84	0.00 Equal variances not assumed	1.98	1.14	2.36	1.39	-6.58	1849.10	0.00	-0.38	0.06	-0.50	-0.27	0.12
F1 In a relative	33.73	0.00 Equal variances not assumed	3.28	1.48	2.54	1.33	11.50	1879.01	0.0	0.74	0.06	0.61	0.87	0.0
F2 Primary br	10.95	0.00 Equal variances not assumed	3.93	1.36	3.17	1.45	11.88	1904.57	0.00	0.76	0.06	0.64	0.89	0.0
F3 Women ar	4.66	0.03 Equal variances not assumed	3.49	1.46	2.81	1.43	10.18	1904.09	0.00	0.67	0.07	0.54	0.80	0.0
F4 In order to	55.53	0.00 Equal variances not assumed	3.99	1.35	3.29	1.52	10.57	1892.42	0.00	0.69	0.07	0.57	0.82	×.00
F5 I believe ge	0.00	0.98 Equal variances assumed	1.75	1.12	1.82	1.12	-1.26	1908.00	0.21	-0.06	0.05	-0.17	0.04	0.11
G1 Women a	194.32	0.00 Equal variances not assumed	2.45	1.25	1.69	0.89	15.42	1697.02	0.00	0.77	0.05	0.67	0.86	<.001
G2 Women e	211.02	0.00 Equal variances not assumed	2.43	1.27	1.67	0.89	15.16	1683.85	0.00	0.76	0.05	0.66	0.86	<.001
G3 The strictr	106.39	0.00 Equal variances not assumed	2.31	1.24	1.72	0.94	11.61	1759.36	0.00	0.58	0.05	0.48	0.68	0.04
G4 Dealing w	56.21	0.00 Equal variances not assumed	2.44	1.21	1.86	1.03	11.16	1844.93	0.00	0.57	0.05	0.47	0.67	0.0
G5 Women re	149.94	0.00 Equal variances not assumed	2.70	1.36	1.86	1.07	14.95	1788.93	0.00	0.84	0.06	0.73	0.95	<.001
G6 Marriage,	52.62	0.00 Equal variances not assumed	3.24	1.52	2.35	1.34	13.54	1866.11	0.00	0.89	0.07	0.76	1.02	<.001
G7 Female st	6.18	0.01 Equal variances not assumed	2.89	1.30	2.76	1.37	2.04	1906.22	0.04	0.12	0.06	0.00	0.24	0.12
H1 On balanc	19.31	0.00 Equal variances not assumed	2.14	1.05	1.83	0.86	7.07	1820.55	0.00	0.31	0.04	0.22	0.40	0.50
H2 I am consi	6.97	0.01 Equal variances not assumed	2.15	1.04	1.97	0.96	4.04	1887.00	0.00	0.18	0.05	0.09	0.27	0.26
H3 I have not	142.94	0.00 Equal variances not assumed	2.66	1.36	1.82	1.04	15.10	1769.58	0.00	0.84	0.06	0.73	0.95	<.00
H4 My family /	12.75	0.00 Equal variances not assumed	1.65	0.96	1.57	0.80	1.77	1835.61	0.08	0.07	0.04	-0.01	0.15	0.04
H5 My current	4.84	0.03 Equal variances not assumed	1.97	1.07	1.65	0.91	7.15	1842.80	0.00	0.32	0.05	0.24	0.41	0.51

©2022 INWES & KWSE

GISE Report 2022

South Korea - women vs. men

Sample sizes are 138 for female/non-binary and 18 for male, so the Mann-Whitney metric is also considered.

				Independ	ent Samples	s Test: T-Tes	ts							
	Levene's Test f	or Equality of Variances		Descriptiv	e Statistics				t-test for	Equality of	Means			Mann- Whitney U
Statements	F Sig.	Result	Female/	no Female/no	Male -	Male - SD	-	df	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
			n-binary	/- n-binary -	Mean				Two-Sided p	Difference	Difference	Difference -	Difference -	(2-tailed)
₩	•		Mean	▲	•	•	•	•	•	•	4	× lower	Upper 🔻	•
B1 Girls and	5.72 0.02	Equal variances not assumed		2.36 1.11	1.61	0.70	3.96	29.76	0.00	0.75	0.19	0.36	1.14	0.01
B2 Female st	5.72 0.02	Equal variances not assumed		2.18 1.12	1.61	0.70	3.00	29.98	0.01	0.57	0.19	0.18	0.96	0.05
B3 Women in	3.24 0.07	Fqual variances assumed		2.83 1.20	1.72	1.02	3.74	154.00	0.00	1.10	0.30	0.52	1.69	<.001
B4 It is equal	0.11 0.75	Equal variances assumed		2.80 1.31	2.72	1.45	0.25	154.00	0.80	0.08	0.33	-0.57	0.74	0.75
B5 Being proi	2.20 0.14	Equal variances assumed		2.58 1.34	2.78	1.63	-0.58	154.00	0.57	-0.20	0.34	-0.88	0.48	0.66
B6 Women in	1.73 0.15	Equal variances assumed		2.58 1.14	1.89	1.13	2.42	154.00	0.02	0.69	0.29	0.13	1.25	0.01
CD1 Women 1	0.51 0.00	Equal variances not assumed	,	1.39	1.67	0.84	6.70	30.71	0.00	1.54	0.23	1.07	2.01	<.001
CD2 Women 2	0.16 0.00	Equal variances not assumed	,	1.11 1.37	1.33	0.69	8.92	37.85	0.00	1.78	0.20	1.37	2.18	<.001
CD3 Women	6.06 0.01	Equal variances not assumed	,	1.30	1.94	1.00	5.15	25.21	0.00	1.34	0.26	0.80	1.87	<.001
CD4 Women	2.07 0.15	5 Equal variances assumed	,	1.30	1.89	1.08	4.37	154.00	0.00	1.39	0.32	0.76	2.02	<.001
CD5 Women	1.02 0.31	Equal variances assumed		2.72 1.37	1.78	1.31	2.77	154.00	0.01	0.95	0.34	0.27	1.62	0.00
CD6 Women	2.39 0.12	Equal variances assumed	,	3.79 1.05	2.50	1.20	4.82	154.00	0.00	1.29	0.27	0.76	1.82	<.001
E11 believe th	1.06 0.31	Equal variances assumed		1.06	1.78	0.94	2.33	154.00	0.02	0.61	0.26	0.09	1.13	0.02
E2 It is crucia	0.58 0.45	Equal variances assumed	-	1.61 0.89	2.78	1.11	-5.08	154.00	0.00	-1.17	0.23	-1.62	-0.71	<.001
E3 It is appro	0.00 0.96	Equal variances assumed	-	1.04	2.94	1.11	4.14	154.00	0.00	-1.09	0.26	-1.61	-0.57	<.001
F1 In a relativ	0.74 0.35	Equal variances assumed	,	3.60 1.22	3.56	1.04	0.15	154.00	0.88	0.05	0.30	-0.55	0.64	0.67
F2 Primary bi	0.76 0.35	Equal variances assumed	4	1.38 0.85	4.22	0.73	0.77	154.00	0.44	0.16	0.21	-0.25	0.58	0.21
F3 Women al	0.92 0.34	Equal variances assumed	,	3.61 1.22	3.11	1.13	1.64	154.00	0.10	0.50	0.30	-0.10	1.10	0.09
F4 In order to	1.43 0.23	Equal variances assumed	4	1.49 0.74	3.94	1.06	2.81	154.00	0.01	0.55	0.20	0.16	0.93	0.01
F5 I believe g	1.20 0.27	Fqual variances assumed		2.07 1.21	2.00	0.97	0.24	154.00	0.81	0.07	0.30	-0.51	0.66	0.93
G1 Women a	5.15 0.02	Equal variances not assumed		2.91 1.11	1.67	0.69	6.61	30.24	0.00	1.24	0.19	0.86	1.62	<,001
G2 Women e	5.40 0.02	Equal variances not assumed		2.86 1.17	1.61	0.70	6.50	31.30	0.00	1.25	0.19	0.86	1.64	<,001
G3 The strict	8.79 0.00	Equal variances not assumed		2.65 1.17	1.56	0.70	5.66	30.90	0.00	1.10	0.19	0.70	1.49	<,001
G4 Dealing w	5.19 0.02	Equal variances not assumed		2.81 1.10	1.67	0.69	6.12	30.01	0.00	1.14	0.19	0.76	1.53	<,001
G5 Women re	8.95 0.00	Equal variances not assumed		2.95 1.20	1.67	0.69	6.71	32.58	0.00	1.28	0.19	0.89	1.67	<,001
G6 Marriage,	1.64 0.20	Equal variances assumed	4	1.22 0.97	3.06	1.21	4.68	154.00	0.00	1.17	0.25	0.68	1.66	<,001
G7 Female st	0.02 0.90	Equal variances assumed		2.86 1.21	3.56	1.25	-2.28	154.00	0.02	-0.69	0.30	-1.29	-0.09	0.02
H1 On baland	5.11 0.03	Equal variances not assumed	~	2.38 1.05	2.00	0.84	1.73	24.58	0.10	0.38	0.22	-0.07	0.83	0.16
H2 I am cons	1.23 0.27	Fqual variances assumed		2.17 1.00	2.11	0.83	0.26	154.00	0.80	0.06	0.25	-0.42	0.55	0.96
H3 I have not	2.51 0.12	Equal variances assumed	~	2.95 1.21	1.72	0.89	4.15	154.00	0.00	1.23	0.30	0.64	1.81	<,001
H4 My family	0.89 0.35	Equal variances assumed	•	.72 0.93	1.61	0.70	0.47	154.00	0.64	0.11	0.23	-0.34	0.55	0.91
H5 Mv curren	0.85 0.36	5 Equal variances assumed		2.11 1.09	1.89	0.96	0.82	154.00	0.41	0.22	0.27	-0.31	0.75	0.43

©2022 INWES & KWSE

GISE Report 2022

CES	
Ā	
PE	
AP	

Africa (responses do not include late responses) - women vs. men

Sample sizes are 242 for female/non-binary and 194 for male: t-tests are prioritized.

					Independe	ent Sample:	s Test: T-Tes	sts							
	Leve	ene's Test fo	r Equality of Variances		Descriptive	Statistics				t-test fo	r Equality of	Means			Mann- Whitnev U
Statements	L	Sig.	Result	Female/no	Female/no	Male -	Male - SD	t.	đf	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
+				n-binary -	n-binary -	Mean				Two-Sided p	Difference	Difference	Difference -	Difference -	(2-tailed)
B1 Girls and	6.67	0.01	Equal variances not assumed	2 07	1 29	1 65	1 06	3 66	433.61	000	0.41	0 11	0 19	1 India	< 001
B2 Female st	0.93	0.34	Equal variances assumed	1.94	1.21	1.78	1.07	1.40	434.00	0.16	0.15	0.11	-0.06	0.37	0.21
B3 Women ir	7.27	0.01	Equal variances not assumed	2.21	1.32	1.90	1.15	2.69	431.06	0.01	0.32	0.12	0.09	0.55	0.01
B4 It is equal	2.71	0.10	Equal variances assumed	2.30	1.30	2.15	1.21	1.25	434.00	0.21	0.15	0.12	-0.09	0.39	0.27
B5 Being proi	11.96	0.00	Equal variances not assumed	2.36	1.34	2.09	1.13	2.27	432.89	0.02	0.27	0.12	0.04	0.50	0.08
B6 Women in	10.90	0.00	Equal variances not assumed	2.06	1.30	1.70	1.02	3.30	433.76	0.00	0.37	0.11	0.15	0.58	0.01
CD1 Women	25.01	0.00	Equal variances not assumed	2.42	1.28	1.85	1.03	5.16	433.99	0.00	0.57	0.11	0.35	0.79	<.001
CD2 Women	10.06	0.00	Equal variances not assumed	2.46	1.28	2.00	1.20	3.88	423.69	0.00	0.46	0.12	0.23	0.70	<.001
CD3 Women	17.00	0.00	Equal variances not assumed	2.76	1.41	2.35	1.21	3.27	432.13	0.00	0.41	0.13	0.16	0.66	0.01
CD4 Women	4.11	0.04	Equal variances not assumed	2.73	1.34	2.41	1.26	2.60	422.51	0.01	0.32	0.12	0.08	0.57	0.01
CD5 Women	9.72	0.00	Equal variances not assumed	2.16	1.29	1.87	1.09	2.58	432.76	0.01	0.30	0.11	0.07	0.52	0.03
CD6 Women	9.24	0.00	Equal variances not assumed	2.80	1.33	2.28	1.26	4.16	422.65	0.00	0.52	0.12	0.27	0.76	<.001
E11 believe th	24.17	0.00	Equal variances not assumed	1.44	0.74	1.26	0.54	2.98	430.45	0.00	0.18	0.06	0.06	0.31	0.01
E2 It is crucia	7.48	0.01	Equal variances not assumed	1.22	09.0	1.32	0.71	-1.58	378.12	0.12	-0.10	0.06	-0.23	0.02	0.06
E3 It is appro	8.06	0.00	Equal variances not assumed	1.44	0.80	1.60	0.99	-1.83	367.65	0.07	-0.16	0.09	-0.33	0.01	0.12
F1 In a relativ	10.42	0.00	Equal variances not assumed	2.41	1.45	2.02	1.29	3.03	429.58	0.00	0.40	0.13	0.14	0.66	0.00
F2 Primary bi	4.68	0.03	Equal variances not assumed	2.97	1.43	2.53	1.28	3.38	428.67	0.00	0.44	0.13	0.18	0.70	0.00
F3 Women al	19.44	0.00	Equal variances not assumed	2.70	1.51	2.25	1.30	3.39	431.80	0.00	0.46	0.13	0.19	0.72	0.00
F4 In order to	3.25	0.07	Equal variances assumed	3.00	1.50	2.41	1.39	4.20	434.00	0.00	0.59	0.14	0.31	0.86	<.001
F5 I believe g	3.70	0.06	Equal variances assumed	1.55	1.01	1.71	1.15	-1.56	434.00	0.12	-0.16	0.10	-0.37	0.04	0.11
G1 Women a	13.73	0.00	Equal variances not assumed	2.05	1.20	1.63	0.90	4.13	432.41	0.00	0.42	0.10	0.22	0.61	<.001
G2 Women e	18.15	0.00	Equal variances not assumed	1.90	1.11	1.51	0.76	4.41	423.49	0.00	0.40	0.09	0.22	0.57	<.001
G3 The stricti	5.58	0.02	Equal variances not assumed	1.90	1.14	1.66	0.95	2.41	433.31	0.02	0.24	0.10	0.04	0.44	0.04
G4 Dealing w	0.53	0.47	Equal variances assumed	2.12	1.20	1.87	1.16	2.20	434.00	0.03	0.25	0.11	0.03	0.47	0.01
G5 Women re	18.16	0.00	Equal variances not assumed	2.36	1.35	1.84	1.12	4.40	433.63	0.00	0.52	0.12	0.29	0.75	<.001
G6 Marriage,	30.47	0.00	Equal variances not assumed	2.67	1.61	1.98	1.36	4.84	433.01	0.00	0.69	0.14	0.41	0.97	<.001
G7 Female st	4.86	0.03	Equal variances not assumed	2.57	1.39	2.35	1.27	1.75	426.39	0.08	0.22	0.13	-0.03	0.47	0.12
H1 On baland	0.29	0.59	Equal variances assumed	1.89	1.02	1.82	0.97	0.70	434.00	0.48	0.07	0.10	-0.12	0.26	0.53
H2 I am cons	0.48	0.49	Equal variances assumed	1.86	1.00	1.78	1.03	0.78	434.00	0.44	0.08	0.10	-0.12	0.27	0.26
H3 I have not	22.47	0.00	Equal variances not assumed	2.36	1.41	1.87	1.13	4.00	434.00	0.00	0.49	0.12	0.25	0.73	<.001
H4 My family	0.01	0.92	Equal variances assumed	1.51	0.93	1.61	0.88	-1.16	434.00	0.25	-0.10	0.09	-0.27	0.07	0.04
H5 My curren	1.68	0.20	Equal variances assumed	1.78	1.11	1.68	0.97	0.99	434.00	0.32	0.10	0.10	-0.10	0.30	0.51

©2022 INWES & KWSE

GISE Report 2022

India - women vs. men

Sample sizes are 258 for female/non-binary and 644 for male: t-tests are prioritized here.

Leteron's fact for Figuinity of Variances Descriptions Statistics Letteron's fact for Figuinity of Variances Descriptions Statistics Letteron's fact for Figuinity of Variances Descriptions Statistics In Stati Stati Letter fact fact from fact for the filteron of the fi						Independer	it Samples	Test: T-Test	ъ							
Sig. Result Family interves Employe Maile Maile So T Maile So T Maile So Maile	2	ene's	Test for Equality of Variances		Desci	riptive Statist	lics				t-test fo	r Equality of	Means			Mann- Whitney U
		Sig.	Result	Female/no	Female/no	Male - n	Male -	Male - SD	-	đ	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig
		•		n-binary - Mean 🔻	sn v	•	Mean	•	Þ	Þ	Wo-Sided p	Difference	Difference	Difference -	Ditterence - IInner ▼	(z-tailed)
		0.00	Equal variances not assumed	2.10	1.27	644	1.73	1.02	4.22	395.46	0.00	0.37	0.09	0.20	0.55	×.00
		0.03	Equal variances not assumed	2.21	1.19	644	1.82	1.11	4.53	443.85	0.00	0.39	0.09	0.22	0.56	×.00
0.00 Equal variances not assumed 2.23 113 6.44 1.24 1.38 2.02 6.56 0.04 0.19 0.01 0.00 Equal variances not assumed 2.23 1.12 6.44 1.23 1.13 6.44 1.23 1.13 6.44 1.23 1.14 90.00 0.25 0.01 0.00 0.00 Equal variances not assumed 2.26 1.13 6.44 1.75 1.14 4.37 4.39 0.00 0.37 0.00 0.00 Equal variances not assumed 2.26 1.13 6.44 1.75 1.14 4.37 4.39 0.00 0.37 0.00 0.00 Equal variances not assumed 2.28 1.13 6.44 1.73 1.39 4.33 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.01 0.00<		0.00	Equal variances not assumed	2.36	1.24	644	1.88	1.13	5.46	437.21	0.00	0.49	0.09	0.31	0.66	
0.0 Gual variances assumed 2.23 1.22 6.44 2.13 1.20 1.07 900.00 0.03 0.01 0.07 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0		0.00	Equal variances not assumed	2.23	1.19	644	2.41	1.38	-2.02	545.81	0.04	-0.19	0.09	-0.37	0.00	0.1
		0.50	Equal variances assumed	2.23	1.22	644	2.13	1.20	1.07	900.00	0.28	0.10	0.09	-0.08	0.27	0.2
		0.00	Equal variances not assumed	2.31	1.26	644	1.93	1.13	4.12	431.71	0.00	0.37	0.09	0.20	0.55	<,00
0.00 Equal variances not assumed 2.26 1.16 6.44 1.75 1.03 6.11 $4.23,22$ 0.00 0.51 0.01 0.00 Equal variances not assumed 2.42 1.19 6.44 1.73 1.11 4.55 $4.44,19$ 0.00 0.39 0.01 0.16 Equal variances not assumed 2.26 1.12 6.44 1.73 1.09 4.25 90.00 0.00 0.34 0.01 0.16 Equal variances not assumed 2.96 1.37 6.44 2.73 1.09 $4.24,7$ 0.00 0.34 0.01 0.00 0.34 0.01 </td <th></th> <th>0.00</th> <th>Equal variances not assumed</th> <td>2.25</td> <td>1.13</td> <td>644</td> <td>1.72</td> <td>1.04</td> <td>6.60</td> <td>439.88</td> <td>0.00</td> <td>0.54</td> <td>0.08</td> <td>0.38</td> <td>0.70</td> <td>00'×</td>		0.00	Equal variances not assumed	2.25	1.13	644	1.72	1.04	6.60	439.88	0.00	0.54	0.08	0.38	0.70	00'×
0.00 Equal variances not assumed 2.42 1.19 6.44 2.02 1.11 4.56 4.41 0.00 0.33 0.00 0.10 Equal variances not assumed 2.40 1.22 6.44 2.17 1.09 4.25 9000 0.00 0.33 0.03 0.11 Equal variances assumed 2.86 1.73 6.44 2.17 1.06 4.25 0.00 0.33 0.00 0.33 0.00 0.34 0.01 0.01 0.00 0.34 0.01 0.00 0.34 0.01		0.00	Equal variances not assumed	2.26	1.16	644	1.75	1.03	6.11	429.32	0.00	0.51	0.08	0.34	0.67	
0.00 Equal variances not assumed 2.40 1.22 6.44 2.02 1.11 4.37 4.39.19 0.00 0.38 0.03 0.14 Equal variances assumed 2.08 1.13 6.44 1.73 1.09 90.00 0.00 0.34 0.03 0.16 Equal variances assumed 2.68 1.13 6.44 1.73 1.09 90.00 0.00 0.34 0.05 0.01 Equal variances assumed 1.60 0.86 6.44 1.71 0.96 -1.68 5.25.45 0.00 0.34 0.01 0.01 Equal variances assumed 2.96 1.37 6.44 2.75 1.43 0.00 0.00 0.34 0.01 0.15 Equal variances assumed 3.50 1.43 3.45 1.44 5.30 9.00 0.01 0.00 0.34 0.01 0.15 Equal variances assumed 3.50 1.43 3.45 1.44 5.30 90.00 0.00 0.01 0.01 <		0.00	Equal variances not assumed	2.42	1.19	644	2.02	1.11	4.58	444.19	0.00	0.39	0.09	0.22	0.56	<.00 <
0.14 Equal variances assumed 2.08 1.13 6.44 1.73 1.09 4.25 900.00 0.00 0.34 0.03 0.16 Equal variances assumed 2.88 1.27 6.44 7.19 7.28 4.00 0.00 0.34 0.03 0.16 Equal variances not assumed 1.81 0.86 6.44 1.71 0.96 -1.83 0.00 0.34 0.03 0.16 Equal variances not assumed 2.86 1.37 6.44 2.71 1.43 -0.22 5.27.45 0.00 0.34 0.01 0.11 Equal variances not assumed 3.55 1.43 3.45 1.44 0.00 0.37 0.01 0.15 Equal variances not assumed 3.55 1.43 3.45 1.44 3.57 1.44 3.66 0.14 0.00 0.37 0.01 0.15 Equal variances not assumed 3.55 1.44 3.25 1.44 0.00 0.60 0.66 0.14 0.11 0.01 <th></th> <th>0.00</th> <th>Equal variances not assumed</th> <td>2.40</td> <td>1.22</td> <td>644</td> <td>2.02</td> <td>1.11</td> <td>4.37</td> <td>439.19</td> <td>0.00</td> <td>0.38</td> <td>0.09</td> <td>0.21</td> <td>0.55</td> <td>00'×</td>		0.00	Equal variances not assumed	2.40	1.22	644	2.02	1.11	4.37	439.19	0.00	0.38	0.09	0.21	0.55	00'×
016 Equal variances assumed 2.56 1.27 644 2.19 1.28 4.09 900.00 0.00 0.38 0.01 014 Equal variances not assumed 1.81 0.88 644 1.71 0.36 5.33 424.47 0.00 0.34 0.01 014 Equal variances not assumed 2.96 1.37 644 2.51 1.43 0.25 5.21.5 0.00 0.37 0.11 0.33 Equal variances assumed 2.96 1.37 644 2.51 1.43 0.25 5.21.5 0.00 0.37 0.11 0.01 0.34 Equal variances assumed 3.35 1.38 644 2.51 1.44 5.30 0.00 0.37 0.11 0.35 Equal variances assumed 3.35 1.33 644 3.45 1.44 5.30 0.00 0.36 0.31 0.11 0.35 Equal variances assumed 3.35 1.43 644 1.74 2.53 3.357 0.00		0.14	Equal variances assumed	2.08	1.13	644	1.73	1.09	4.25	900.00	0.00	0.34	0.08	0.19	0.50	
0.04 Equal variances not assumed 1.81 0.88 6.44 1.48 0.78 5.33 4.24.47 0.00 0.34 0.034 0.04 Equal variances not assumed 1.60 0.86 6.44 1.71 0.96 -1.68 5.25.45 0.09 -0.11 0.01 0.13 Equal variances not assumed 2.48 1.29 6.44 2.51 1.43 -0.22 5.27.15 0.09 -0.11 0.01 0.13 Equal variances assumed 3.50 1.43 6.44 2.51 1.41 5.00 90.00 0.00 0.37 0.11 0.45 Equal variances assumed 3.50 1.43 6.44 1.48 5.50 90.00 0.01 0.00 0.37 0.11 0.45 Equal variances assumed 3.50 1.43 6.44 1.82 1.14 5.00 90.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0		0.16	Equal variances assumed	2.58	1.27	644	2.19	1.28	4.09	900.006	0.00	0.38	0.09	0.20	0.57	×.00
0.04 Equal variances not assumed 1.60 0.86 6.44 1.71 0.96 -1.68 5.25.45 0.09 -0.11 0.01 0.01 Equal variances not assumed 2.48 1.29 6.44 2.51 1.43 -0.22 5.25.15 0.09 -0.11 0.01 0.11 Equal variances assumed 2.96 1.37 6.44 2.59 1.31 0.00 0.35 0.01 0.01 0.31 0.11 0.45 Equal variances assumed 3.50 1.43 6.44 3.24 1.44 5.50 900.00 0.00 0.35 0.11 0.46 Equal variances assumed 3.50 1.43 6.44 1.74 0.30 0.00 0.35 0.01 0.15 0.00 Equal variances assumed 2.14 1.08 6.44 1.74 0.32 5.35 0.00 0.00 0.35 0.01 0.01 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.01		0.04	Equal variances not assumed	1.81	0.88	644	1.48	0.78	5.33	424.47	0.00	0.34	0.06	0.21	0.46	>.00
0/1 Equal variances not assumed 2.48 1.29 6.44 2.51 1.43 -0.22 5.22.15 0.82 -0.02 0.10 0.11 Equal variances assumed 2.96 1.37 6.44 2.59 1.30 3.81 900.00 0.00 0.37 0.11 0.11 Equal variances assumed 2.96 1.37 6.44 2.59 1.30 3.81 0.00 0.00 0.37 0.11 0.11 Equal variances assumed 3.93 1.43 6.44 3.45 1.44 6.50 0.00 0.00 0.46 0.16 0.00 Equal variances assumed 1.67 1.03 6.44 1.74 0.92 5.92 393.57 0.00 0.00 0.46 0.16 0.44 0.17 0.14 0.45 0.14 0.46 0.14 0.44 1.74 0.92 5.92 900.00 0.00 0.46 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16		0.04	Equal variances not assumed	1.60	0.86	644	1.71	0.96	-1.68	525.45	0.09	-0.11	0.07	-0.24	0.02	0.1
0.33 Equal variances assumed 2.96 1.37 6.44 2.59 1.30 3.81 900.00 0.00 0.37 0.11 0.11 Equal variances assumed 3.85 1.38 6.44 3.27 1.45 5.51 900.00 0.00 0.56 0.11 0.04 Equal variances assumed 3.50 1.43 6.44 3.27 1.45 5.51 900.00 0.00 0.56 0.11 0.05 Equal variances assumed 3.53 1.43 6.44 3.75 1.44 5.30 900.00 0.00 0.56 0.14 0.05 Equal variances assumed 1.67 1.03 6.44 1.70 0.99 6.50 4.66 6.76 0.00 0.00 0.76 0.00 0.06 Equal variances assumed 2.14 1.06 6.44 1.74 0.92 5.59 900.00 0.00 0.76 0.00 0.06 Equal variances assumed 2.14 1.06 6.44 1.74 0.92 </td <th></th> <th>0.01</th> <th>Equal variances not assumed</th> <td>2.48</td> <td>1.29</td> <td>644</td> <td>2.51</td> <td>1.43</td> <td>-0.22</td> <td>522.15</td> <td>0.82</td> <td>-0.02</td> <td>0.10</td> <td>-0.21</td> <td>0.17</td> <td>0.7</td>		0.01	Equal variances not assumed	2.48	1.29	644	2.51	1.43	-0.22	522.15	0.82	-0.02	0.10	-0.21	0.17	0.7
011 Equal variances assumed 385 1.38 6.44 3.27 1.45 5.51 900.00 0.00 0.56 0.11 0.04 Equal variances assumed 3.50 1.43 6.44 2.94 1.44 5.30 900.00 0.00 0.56 0.11 0.05 Equal variances assumed 3.51 1.43 6.44 3.45 1.43 6.44 0.0 0.55 0.00 0.00 0.46 0.16		0.39	Equal variances assumed	2.96	1.37	644	2.59	1.30	3.81	900.00	0.00	0.37	0.10	0.18	0.56	<,00
0.45 Equal variances assumed 3.50 1.43 6.44 2.94 1.44 5.30 900.00 0.00 0.06 0.16 0.11 0.00 Equal variances assumed 3.93 1.35 6.44 3.45 1.48 4.66 5.15.75 0.00 0.06 0.48 0.10 0.00 Equal variances assumed 2.13 1.08 6.44 1.82 1.16 0.16 0.46 0.16 0.48 0.00 0.00 0.40 0.46 0.01 0.00 0.40 0.46 0.00 0.40 0.46 0.00 0.40 0.46 0.00 0.40 0.46 0.00 0.40 0.46 0.00 0.40 0.46 0.00 0.40 0.46 0.00 0.40 0.40 0.40 0.06 0.00 0.46 0.00 0.44 0.00 0.40 0.40 0.00 0.40 0.40 0.00 0.40 0.40 0.00 0.40 0.40 0.00 0.00 0.00 0.00		0.11	Equal variances assumed	3.85	1.38	644	3.27	1.45	5.51	900.00	0.00	0.58	0.11	0.37	0.79	00'>
0.00 Equal variances not assumed 3.93 1.35 6.44 3.45 1.48 4.66 5.15.75 0.00 0.48 0.10 0.25 Equal variances assumed 1.67 1.03 6.44 1.82 1.10 -1.82 90.00 0.07 -0.15 0.08 0.00 Equal variances not assumed 2.13 1.08 6.44 1.78 0.92 5.59 333.57 0.00 0.46 0.05 0.00 Equal variances not assumed 2.14 1.06 6.44 1.74 0.29 5.39 333.57 0.00 0.46 0.05 0.01 Equal variances not assumed 2.14 1.06 6.44 1.74 0.29 5.59 900.00 0.40 0.00 0.01 Equal variances not assumed 2.12 1.126 6.44 1.78 0.29 5.55 900.00 0.40 0.01 0.01 Equal variances not assumed 2.28 1.14 0.86 0.99 6.07 4.99 0.00 <td< td=""><th></th><th>0.45</th><th>Equal variances assumed</th><td>3.50</td><td>1.43</td><td>644</td><td>2.94</td><td>1.44</td><td>5.30</td><td>900.00</td><td>0.00</td><td>0.56</td><td>0.11</td><td>0.35</td><td>0.77</td><td></td></td<>		0.45	Equal variances assumed	3.50	1.43	644	2.94	1.44	5.30	900.00	0.00	0.56	0.11	0.35	0.77	
0.25 Equal variances assumed 1.67 1.03 644 1.82 1.10 -1.82 900.00 0.07 -0.15 0.06 0.00 Equal variances assumed 2.13 1.08 6.44 1.68 0.86 5.92 333.57 0.00 0.45 0.08 0.00 Equal variances not assumed 2.14 1.06 6.44 1.74 0.92 5.59 900.00 0.00 0.40 0.00 0.01 Equal variances not assumed 2.14 1.06 6.44 1.74 0.92 5.59 900.00 0.40 0.40 0.01 0.01 Equal variances not assumed 2.28 1.124 6.44 1.74 0.92 5.59 900.00 0.40 0.40 0.01 0.00 Equal variances not assumed 2.28 1.24 1.86 1.29 6.71 4.90 7.7 0.10 0.45 0.10 0.45 0.10 0.40 0.41 0.10 0.10 0.10 0.10 0.10 0.10<		0.00	Equal variances not assumed	3.93	1.35	644	3.45	1.48	4.66	515.75	0.00	0.48	0.10	0.28	0.68	<.00
0.00 Equal variances not assumed 2.13 1.08 6.44 1.68 0.86 5.32 333.57 0.00 0.45 0.00 0.00 Equal variances not assumed 2.20 1.09 6.44 1.70 0.90 6.50 405.08 0.00 0.05 0.00 0.01 Equal variances not assumed 2.214 1.06 6.44 1.74 0.32 5.55 900.00 0.00 0.40 0.00 0.01 Equal variances not assumed 2.28 1.09 6.44 1.88 0.98 5.11 430.08 0.00 0.40 0.46 0.00 0.00 Equal variances not assumed 2.28 1.24 6.44 1.88 0.98 5.11 430.17 0.00 0.66 0.00 0.66 0.00 0.66 0.00 0.66 0.00 0.66 0.00 0.66 0.00 0.66 0.00 0.66 0.00 0.66 0.00 0.00 0.66 0.00 0.66 0.00 0.00		0.25	Equal variances assumed	1.67	1.03	644	1.82	1.10	-1.82	900.00	0.07	-0.15	0.08	-0.30	0.01	0.0
0.00 Equal variances not assumed 2.20 1.09 6.44 1.70 0.90 6.50 4.05.08 0.00 0.50		0.00	Equal variances not assumed	2.13	1.08	644	1.68	0.86	5.92	393.57	0.00	0.45	0.08	0.30	0.59	<.00 <
0.06 Equal variances assumed 2.14 1.06 6.44 1.74 0.92 5.59 900.00 0.00 0.40 0.40 0.01 0.01 Equal variances assumed 2.28 1.09 6.44 1.88 0.88 5.11 4.008 0.00 0.40 0.40 0.00 0.00 Equal variances not assumed 2.28 1.49 6.44 1.86 1.14 6.40 490.73 0.00 0.61 0.10 0.00 Equal variances not assumed 2.38 1.29 6.07 4.39.17 0.00 0.61 0.16		0.00	Equal variances not assumed	2.20	1.09	644	1.70	0.90	6.50	405.08	0.00	0.50	0.08	0.35	0.65	
0/1 Equal variances not assumed 2.28 1.09 6.44 1.88 0.98 5.11 4.30.08 0.00 0.40 0.40 0.40 0.40 0.00 0.00 Equal variances not assumed 2.42 1.24 6.44 1.86 1.04 6.40 499.73 0.00 0.65 0.01 0.05 Equal variances not assumed 2.98 1.40 6.44 2.35 1.29 6.07 4.39.17 0.00 0.65 0.01 0.00 Equal variances not assumed 2.80 1.40 6.44 2.35 1.25 6.07 4.39.17 0.00 0.67 0.01 0.01 Equal variances sumed 1.95 6.44 1.80 0.33 2.33 900.00 0.67 0.05 0.01 0.30 Equal variances assumed 2.16 6.44 1.83 0.33 2.33 900.00 0.65 0.05 0.05 0.31 Equal variances assumed 2.16 6.44 1.83 1.03 5.69		0.06	Equal variances assumed	2.14	1.06	644	1.74	0.92	5.59	900.00	0.00	0.40	0.07	0.26	0.53	<.00
0.00 Equal variances not assumed 2.42 1.24 6.44 1.86 1.04 6.40 4.99.73 0.00 0.56 0.03 0.05 Equal variances not assumed 2.98 1.40 6.44 2.35 1.29 6.07 4.99.17 0.00 0.51 0.01 0.00 Equal variances not assumed 2.98 1.40 6.44 2.77 1.35 0.30 5.55.48 0.77 0.03 0.09 0.01 0.03 0.05 0.03 0.03 Equal variances assumed 1.95 0.03 5.55.48 0.77 0.03 0.04 0.01 0.05 0.05 0.03 0.05		0.01	Equal variances not assumed	2.28	1.09	644	1.88	0.98	5.11	430.08	0.00	0.40	0.08	0.25	0.55	>.00
0.05 Equal variances not assumed 2.98 1.40 6.44 2.36 1.29 6.07 4.39.17 0.00 0.61 0.10 0.00 Equal variances not assumed 2.80 1.22 6.44 2.77 1.36 0.30 5.55.48 0.77 0.03 0.06 0.30 Equal variances not assumed 1.95 0.87 6.44 1.80 0.83 2.33 900.00 0.05 0.05 0.38 Equal variances assumed 1.95 0.87 6.44 1.80 0.83 2.33 900.00 0.05 0.15 0.00 0.38 Equal variances assumed 2.11 0.86 6.44 1.83 1.03 5.69 900.00 0.05 0.13 0.07 0.43 URI Equal variances assumed 2.76 1.04 6.44 1.83 1.03 5.69 900.00 0.01 0.01 0.44 1.83 1.03 5.69 900.00 0.03 0.03 0.03 0.03 0.03 <th></th> <th>0.00</th> <th>Equal variances not assumed</th> <td>2.42</td> <td>1.24</td> <td>644</td> <td>1.86</td> <td>1.04</td> <td>6.40</td> <td>409.73</td> <td>0.00</td> <td>0.56</td> <td>0.09</td> <td>0.39</td> <td>0.73</td> <td></td>		0.00	Equal variances not assumed	2.42	1.24	644	1.86	1.04	6.40	409.73	0.00	0.56	0.09	0.39	0.73	
0.00 Equal variances not assumed 2.80 1.22 644 2.77 1.36 0.30 5.55.48 0.77 0.03 0.06 0.30 Equal variances assumed 1.95 0.87 644 1.80 0.83 2.33 900.00 0.02 0.15 0.06 0.38 Equal variances assumed 1.95 0.87 644 1.98 0.92 2.00 900.00 0.05 0.15 0.06 0.54 Equal variances assumed 2.11 0.86 644 1.83 1.03 5.69 900.00 0.05 0.13 0.07 0.54 Equal variances assumed 2.76 1.04 644 1.83 1.03 5.69 900.00 0.043 0.07 0.01 Equal variances assumed 1.74 0.33 644 1.57 0.78 2.48 409.74 0.01 0.16 0.07 0.18 Equal variances assumed 1.86 0.86 644 1.64 0.78 2.48 409.74 0.0		0.05	Equal variances not assumed	2.98	1.40	644	2.36	1.29	6.07	439.17	0.00	0.61	0.10	0.41	0.81	<.00
0.30 Equal variances assumed 1.95 0.87 644 1.80 0.83 2.33 900.00 0.02 0.15 0.06 0.38 Equal variances assumed 2.11 0.86 644 1.98 0.92 2.00 00.00 0.05 0.13 0.01 0.54 Equal variances assumed 2.11 0.86 644 1.83 1.03 5.69 900.00 0.05 0.13 0.01 0.64 Equal variances assumed 2.26 1.04 644 1.83 1.03 5.69 900.00 0.05 0.43 0.05 0.01 Equal variances assumed 1.74 0.33 644 1.57 0.78 2.48 409.74 0.01 0.16 0.07 0.18 Equal variances assumed 1.86 0.86 644 1.64 0.78 2.48 409.74 0.01 0.16 0.07 0.18 Equal variances assumed 1.86 0.86 644 1.64 0.78 0.48 0.07		0.00	Equal variances not assumed	2.80	1.22	644	2.77	1.36	0.30	525.48	0.77	0.03	0.09	-0.15	0.21	0.6
0.38 Equal variances assumed 2.11 0.86 644 1.98 0.92 2.00 900.00 0.05 0.13 0.01 0.54 Equal variances assumed 2.26 1.04 644 1.83 1.03 5.69 900.00 0.05 0.43 0.08 0.01 Equal variances assumed 2.26 1.04 644 1.57 0.78 2.48 490.74 0.01 0.16 0.05 0.01 0.01 Equal variances assumed 1.74 0.33 644 1.57 0.78 2.48 490.74 0.01 0.16 0.07 0.18 Equal variances assumed 1.86 0.86 644 1.64 0.90 3.24 900.00 0.01 0.01		0.30	Equal variances assumed	1.95	0.87	644	1.80	0.83	2.33	900.006	0.02	0.15	0.06	0.02	0.27	0.0
0.54 Equal variances assumed 2.26 1.04 644 1.83 1.03 5.69 900.00 0.00 0.43 0.03 0.06 0.43 0.06 0.43 0.06 0.43 0.06 0.06 0.43 0.06 0.06 0.07 0.07 0.06 0.43 0.06 0.01 Equal variances not assumed 1.74 0.33 644 1.57 0.78 2.48 409.74 0.01 0.16 0.07 0.18 Equal variances assumed 1.86 0.86 644 1.64 0.90 3.24 900.00 0.00 0.21 0.07		0.38	Equal variances assumed	2.11	0.86	644	1.98	0.92	2.00	900.00	0.05	0.13	0.07	0.00	0.26	0.0
0.01 Equal variances not assumed 1.74 0.33 644 1.57 0.78 2.48 409.74 0.01 0.16 0.07 0.18 Equal variances assumed 1.86 0.86 644 1.64 0.90 3.24 900.00 0.00 0.21 0.07		0.54	Equal variances assumed	2.26	1.04	644	1.83	1.03	5.69	900.00	0.00	0.43	0.08	0.28	0.58	×.00
0.18 Equal variances assumed 1.86 0.86 644 1.64 0.90 3.24 900.00 0.00 0.21 0.07		0.01	Equal variances not assumed	1.74	0.93	644	1.57	0.78	2.48	409.74	0.01	0.16	0.07	0.03	0.29	0.0
		0.18	Equal variances assumed	1.86	0.86	644	1.64	0.90	3.24	900.00	0.00	0.21	0.07	0.08	0.34	<.00

GISE Report 2022

©2022 INWES & KWSE

Japan - women vs. men

Sample sizes are 130 for female/non-binary and 16 for male, so the Mann-Whitney metric is also considered.

					Independ	dent Sample	s Test: T-Te	sts							
	Leve	ene's Test fo	or Equality of Variances		Descriptiv	e Statistics				t-test fo	r Equality of	Means			Mann- Whitnev U
Statements	Ŀ	Sig.	Result	Female	no Female/no	Male -	Male - SD	-	ŧ	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
[[n-binar	y - n-binary -	Mean	[[[Two-Sided p	Difference	Difference	Difference -	Difference -	(2-tailed)
ΨÎ	*	•		▼ Mean	▼ SD ▼	•	•	*	4	•	4	*	Lower 🔻	Upper 🔻	₩.
B1 Girls and	2.42	0.12	2 Equal variances assumed	,	2.32 1.33	1.69	1.01	1.84	144.00	0.07	0.64	0.34	-0.05	1.32	0.05
B2 Female st	5.55	0.02	2 Equal variances not assumed		2.78 1.28	1.69	0.95	4.19	22.40	0.00	1.10	0.26	0.55	1.64	<.001
B3 Women in	13.17	0.00	Equal variances not assumed		3.08 1.35	1.75	0.77	5.85	27.87	0.00	1.33	0.23	0.86	1.79	<.001
B4 It is equal	0.59	0.44	4 Equal variances assumed		2.85 1.27	3.06	1.24	-0.65	144.00	0.52	-0.22	0.33	-0.88	0.45	0.48
B5 Being prot	0.03	0.86	5 Equal variances assumed		2.36 1.17	3.31	1.20	-3.05	144.00	0.00	-0.95	0.31	-1.57	-0.33	0.00
B6 Women in	0.48	0.45	Equal variances assumed		2.92 1.27	2.19	1.22	2.19	144.00	0.03	0.74	0.34	0.07	1.40	0.03
CD1 Women	6.58	0.01	Equal variances not assumed		3.33 1.37	2.00	1.15	4.26	20.54	0.00	1.33	0.31	0.68	1.98	<.001
CD2 Women	5.51	0.02	2 Equal variances not assumed		3.18 1.43	1.69	1.20	4.60	20.65	0.00	1.49	0.32	0.81	2.16	<.001
CD3 Women	0.01	0.91	1 Equal variances assumed		3.02 1.39	2.94	1.44	0.21	144.00	0.83	0.08	0.37	-0.65	0.81	0.83
CD4 Women	2.40	0.12	2 Equal variances assumed		3.21 1.36	3.06	1.61	0.40	144.00	0.69	0.15	0.37	-0.58	0.87	0.72
CD5 Women	0.00	0.99	9 Equal variances assumed		2.16 1.32	1.88	1.31	0.82	144.00	0.41	0.29	0.35	-0.40	0.98	0.30
CD6 Women	0.23	0.63	3 Equal variances assumed		3.64 1.30	3.50	1.37	0.40	144.00	0.69	0.14	0.35	-0.55	0.82	0.71
E11 believe th	0.01	0.90	Equal variances assumed		2.77 1.08	2.44	1.09	1.16	144.00	0.25	0.33	0.29	-0.24	0.90	0.25
E2 It is crucia	1.40	0.24	4 Equal variances assumed	•	1.61 0.81	2.13	1.09	-2.31	144.00	0.02	-0.52	0.22	-0.96	-0.07	0.04
E3 It is appro	2.61	0.11	1 Equal variances assumed	•	1.91 0.93	2.94	1.29	4.00	144.00	0.00	-1.03	0.26	-1.54	-0.52	0.00
F1 In a relativ	1.58	0.21	1 Equal variances assumed	7	1.05 1.06	3.75	0.86	1.07	144.00	0.29	0.30	0.28	-0.25	0.84	0.15
F2 Primary bi	5.37	0.02	2 Equal variances not assumed	7	1.66 0.75	4.31	1.01	1.33	17.09	0.20	0.35	0.26	-0.20	0.90	0.10
F3 Women al	3.15	0.08	B Equal variances assumed		3.91 1.26	3.00	1.03	2.77	144.00	0.01	0.91	0.33	0.26	1.56	0.01
F4 In order to	1.68	0.20	Equal variances assumed	7	1.62 0.78	4.25	0.86	1.75	144.00	0.08	0.37	0.21	-0.05	0.78	0.03
F5 I believe g	1.07	0.30	Equal variances assumed		2.07 1.22	2.25	1.06	-0.57	144.00	0.57	-0.18	0.32	-0.81	0.45	0.35
G1 Women a	11.01	0.00	Equal variances not assumed		2.88 1.26	1.88	0.81	4.39	25.14	0.00	1.01	0.23	0.54	1.48	0.00
G2 Women e	9:95	0.00	Equal variances not assumed		2.88 1.28	1.69	0.70	5.73	29.12	0.00	1.20	0.21	0.77	1.62	<.001
G3 The stricti	16.90	0.00	Equal variances not assumed		2.60 1.29	1.50	0.52	6.40	43.96	0.00	1.10	0.17	0.75	1.45	<.001
G4 Dealing w	4.71	0.03	Equal variances not assumed		2.57 1.23	1.63	0.89	3.83	22.86	0.00	0.94	0.25	0.43	1.45	0.00
G5 Women re	17.40	0.00	Equal variances not assumed		2.94 1.31	1.44	0.51	8.72	45.45	0.00	1.50	0.17	1.15	1.85	<.001
G6 Marriage,	0.07	0.80	Equal variances assumed		3.47 1.42	2.81	1.47	1.74	144.00	0.08	0.66	0.38	-0.09	1.40	0.10
G7 Female st	0.01	0.92	2 Equal variances assumed		3.62 1.13	3.94	1.12	-1.08	144.00	0.28	-0.32	0.30	-0.91	0.27	0.29
H1 On baland	7.66	0.01	Equal variances not assumed		2.68 1.15	2.31	0.70	1.83	26.10	0.08	0.37	0.20	-0.04	0.79	0.29
H2 I am cons	0.17	0.68	B Equal variances assumed		2.68 1.22	2.69	1.20	-0.01	144.00	0.99	0.00	0.32	-0.64	0.63	06.0
H3 I have not	8.11	0.01	Equal variances not assumed		3.38 1.39	1.63	1.02	6.17	22.47	0.00	1.75	0.28	1.16	2.34	<.001
H4 My family	0.44	0.51	Equal variances assumed		1.71 0.93	1.75	0.86	-0.17	144.00	0.86	-0.04	0.24	-0.52	0.44	0.66
H5 My curren	6.14	0.01	Equal variances not assumed		2.35 1.21	1.62	0.62	3.88	31.69	0.00	0.73	0.19	0.35	1.11	0.02

©2022 INWES & KWSE

GISE Report 2022

Europe - women vs. men

Sample sizes are 44 for female/non-binary and 21 for male, so the Mann-Whitney metric is also considered.

	-				Independ	lent Sample:	s Test: T-Tes	sts							
	Leve	ne's Test fo	r Equality of Variances		Descriptive	e Statistics				t-test for	Equality of I	Means			Mann- Whitnev U
Statements	ت	Sig.	Result	Female/non-	Female/non-	Male - Mean	Male - SD	-	đ	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
+	•	4		binary - Mean	binary - Sn	•	•	•	•	Two-Sided n	Difference	Difference	Difference -	Difference -	(2-tailed)
B1 Girls and	0.00	0.97	Fequal variances assumed	3.39	1.59	2.52	1.57	2.06	63.00	0.04	0.86	0.42	0.02	1.70	0.05
B2 Female st	1.18	0.28	Equal variances assumed	2.93	1.53	2.29	1.42	1.63	63.00	0.11	0.65	0.40	-0.15	1.44	0.11
B3 Women in	0.25	0.62	Equal variances assumed	3.52	1.41	2.33	1.24	3.31	63.00	0.00	1.19	0.36	0.47	1.91	0.00
B4 It is equal	0.02	0.90	Equal variances assumed	3.41	1.34	2.67	1.39	2.07	63.00	0.04	0.74	0.36	0.03	1.46	0.05
B5 Being pro	0.04	0.84	Equal variances assumed	3.68	1.46	2.48	1.44	3.13	63.00	0.00	1.21	0.39	0.44	1.98	0.00
B6 Women in	1.54	0.22	Equal variances assumed	3.61	1.45	2.52	1.57	2.76	63.00	0.01	1.09	0.39	0.30	1.88	0.01
CD1 Women	0.48	0.49	Equal variances assumed	3.27	1.37	2.90	1.48	0.99	63.00	0.33	0.37	0.37	-0.38	1.11	0.30
CD2 Women	0.67	0.42	Equal variances assumed	3.11	1.37	2.81	1.54	0.81	63.00	0.42	0.30	0.38	-0.45	1.06	0.41
CD3 Women	0.44	0.51	Equal variances assumed	3.36	1.50	2.71	1.38	1.68	63.00	0.10	0.65	0.39	-0.12	1.42	0.09
CD4 Women	0.25	0.62	Equal variances assumed	3.34	1.49	2.76	1.41	1.49	63.00	0.14	0.58	0.39	-0.20	1.36	0.13
CD5 Women	0.41	0.53	Equal variances assumed	2.70	1.27	2.48	1.25	0.68	63.00	0.50	0.23	0.33	-0.44	0.00	0.42
CD6 Women	2.89	0.09	Equal variances assumed	3.39	1.13	3.00	1.48	1.17	63.00	0.25	0.39	0.33	-0.28	1.05	0.27
E11 believe th	4.48	0.04	Equal variances not assumed	2.41	1.26	1.86	0.91	2.01	52.89	0.05	0.55	0.28	0.00	1.10	0.11
E2 It is crucia	4.54	0.04	Equal variances not assumed	1.27	0.62	1.48	0.81	-1.01	31.64	0.32	-0.20	0.20	-0.61	0.21	0.37
E3 It is appro	0.30	0.58	Equal variances assumed	2.18	1.39	2.90	1.51	-1.91	63.00	0.06	-0.72	0.38	-1.48	0.03	0.07
F1 In a relativ	2.37	0.13	Equal variances assumed	4.18	1.26	3.29	1.45	2.55	63.00	0.01	0.90	0.35	0.19	1.60	0.01
F2 Primary bi	0.64	0.43	Equal variances assumed	4.50	1.25	3.95	1.20	1.67	63.00	0.10	0.55	0.33	-0.11	1.20	0.01
F3 Women a	0.33	0.57	Equal variances assumed	4.09	1.38	3.43	1.47	1.77	63.00	0.08	0.66	0.37	-0.08	1.41	0.04
F4 In order to	4.19	0.04	Equal variances not assumed	4.48	1.21	3.90	1.41	1.60	34.53	0.12	0.57	0.36	-0.15	1.30	0.05
F5 I believe g	3.03	0.09	Equal variances assumed	1.45	1.13	2.00	1.48	-1.64	63.00	0.11	-0.55	0.33	-1.21	0.12	0.04
G1 Women a	1.45	0.23	Equal variances assumed	3.14	1.46	2.19	1.29	2.54	63.00	0.01	0.95	0.37	0.20	1.69	0.01
G2 Women e	1.13	0.29	Equal variances assumed	3.16	1.51	2.29	1.35	2.26	63.00	0.03	0.87	0.39	0.10	1.65	0.02
G3 The strict	1.98	0.16	Equal variances assumed	2.82	1.57	2.19	1.33	1.58	63.00	0.12	0.63	0.40	-0.17	1.42	0.11
G4 Dealing w	0.00	0.97	Equal variances assumed	3.09	1.51	2.29	1.45	2.04	63.00	0.05	0.81	0.40	0.02	1.60	0.04
G5 Women re	0.02	0.90	Equal variances assumed	3.52	1.52	2.52	1.50	2.49	63.00	0.02	1.00	0.40	0.20	1.80	0.02
G6 Marriage,	2.78	0.10	Equal variances assumed	3.59	1.62	2.90	1.37	1.67	63.00	0.10	0.69	0.41	-0.13	1.51	0.06
G7 Female st	0.48	0.49	Equal variances assumed	2.89	1.38	3.19	1.36	-0.83	63.00	0.41	-0.30	0.37	-1.03	0.43	0.38
H1 On baland	1.71	0.20	Equal variances assumed	2.18	1.15	2.14	0.85	0.14	63.00	0.89	0.04	0.28	-0.52	0.60	0.78
H2 I am cons	2.04	0.16	Equal variances assumed	1.95	1.14	2.38	0.80	-1.54	63.00	0.13	-0.43	0.28	-0.98	0.13	0.04
H3 I have not	15.99	0.00	Equal variances not assumed	3.11	1.63	1.90	1.04	3.61	57.46	0.00	1.21	0.34	0.54	1.88	0.01
H4 My family	4.79	0.03	Equal variances not assumed	1.73	1.32	1.43	0.75	1.16	61.00	0.25	0.30	0.26	-0.22	0.81	0.71
H5 My curren	9.03	0.00	Equal variances not assumed	2.27	1.30	1.62	0.74	2.57	60.89	0.01	0.65	0.25	0.15	1.16	0.07

©2022 INWES & KWSE

GISE Report 2022

South America - women vs. men

Sample sizes are 38 for female/non-binary and 5 for male, so the Mann-Whitney metric is prioritized.

	Mann- Whitnev U	Asymp. Sig.		0.23	0.30	0.19	0.01	0.01	0.06	0.01	0.01	0.01	0.01	0.03	0.10	0.28	0.06	0.42	<.001	<.001	0.05	0.00	0.93	0.15	0.02	0.13	0.04	0.01	0.54	0.82	0.19	0.28	0.05	0.31	0.69
		95% C.I. of		2.33	2.00	2.33	2.94	2.94	2.63	2.94	3.01	3.03	2.70	2.44	2.34	1.43	1.03	0.47	3.00	3.18	2.49	2.65	1.59	2.16	2.65	2.31	2.54	3.24	1.92	1.55	1.74	1.60	1.96	06.0	0.81
		95% C.I. of		-0.62	-0.67	-0.39	0.75	0.57	0.01	0.44	0.47	0.66	0.54	0.12	-0.03	-0.47	-3.09	-1.69	0.70	1.13	-0.07	0.46	-1.10	-0.47	0.47	-0.31	0.05	0.61	-1.05	-1.20	-0.36	-0.47	0.52	-1.40	-1.38
	Means	Std. Error		0.73	0.66	0.67	0.47	0.59	0.65	0.62	0.63	0.59	0.54	0.57	0.59	0.47	0.76	0.53	0.57	0.51	0.63	0.54	0.67	0.65	0.46	0.65	0.62	0.65	0.73	0.68	0.52	0.51	0.33	0.57	0.54
	r Equality of	Mean		0.85	0.67	0.97	1.85	1.75	1.32	1.69	1.74	1.85	1.62	1.28	1.15	0.48	-1.03	-0.61	1.85	2.15	1.21	1.55	0.24	0.84	1.56	1.00	1.29	1.93	0.44	0.17	0.69	0.57	1.24	-0.25	-0.28
	t-test fo	Significance -		0.25	0.32	0.16	0.01	00.0	0.05	0.01	0.01	0.00	0.00	0.03	0.06	0.31	0.24	0.26	0.00	0.00	0.06	0.01	0.72	0.20	0.01	0.13	0.04	0.01	0.56	0.80	0.19	0.27	0.00	0.66	0.60
		df	•	41.00	41.00	41.00	7.22	41.00	41.00	41.00	41.00	41.00	41.00	41.00	41.00	41.00	4.26	41.00	41.00	41.00	41.00	41.00	41.00	41.00	7.03	41.00	41.00	41.00	41.00	41.00	41.00	41.00	12.33	41.00	41.00
: T-Tests		-	Þ	1.17	1.01	1.44	3.97	2.99	2.03	2.74	2.77	3.14	3.02	2.23	1.96	1.02	-1.36	-1.14	3.25	4.24	1.92	2.86	0.36	1.29	3.37	1.54	2.10	2.96	0.59	0.26	1.33	1.11	3.76	-0.44	-0.52
amples Test		Male - SD	•	1.79	1.30	1.67	0.89	0.84	1.00	0.89	0.89	0.89	0.84	0.84	1.67	0.89	1.67	1.67	1.14	0.89	1.58	1.58	0.89	1.41	0.89	1.00	0.89	0.89	1.79	1.48	0.55	0.84	0.55	0.84	1.52
pendent Sa	Statistics	Male -		2.20	2.20	2.40	1.60	1.80	2.00	1.60	1.60	1.60	1.80	1.80	2.40	1.60	2.40	2.40	2.60	2.40	3.00	3.00	1.60	2.00	1.60	2.00	1.60	1.60	2.80	2.80	1.60	1.80	1.60	2.20	2.60
Inde	Descriptive	Female/no		1.51	1.40	1.38	1.46	1.27	1.40	1.33	1.36	1.27	1.15	1.24	1.18	1.00	0.82	1.04	1.20	1.08	1.30	1.08	1.44	1.37	1.42	1.39	1.33	1.41	1.51	1.42	1.14	1.10	1.37	1.23	1.09
		Female/no	Mean V	3.05	2.87	3.37	3.45	3.55	3.32	3.29	3.34	3.45	3.42	3.08	3.55	2.08	1.37	1.79	4.45	4.55	4.21	4.55	1.84	2.84	3.16	3.00	2.89	3.53	3.24	2.97	2.29	2.37	2.84	1.95	2.32
	Test for Equality of Variances	Result	•	Equal variances assumed	Equal variances assumed	Equal variances assumed	Equal variances not assumed	Equal variances assumed	Equal variances assumed																										
	vene's	Sig.	P	0.81	0.48	0.84	0.03	0.11	0.16	0.12	0.10	0.23	0.19	0.29	0.34	0.95	0.02	0.14	0.98	0.92	0.66	0.23	0.27	0.85	0.01	0.08	0.13	0.10	0.76	0.55	0.17	0.41	0.03	0.50	0.18
	Le	Statements F	<i>₽</i>	B1 Girls and 0.06	B2 Female st 0.50	B3 Women in 0.04	B4 It is equal 4.94	B5 Being pro 2.62	B6 Women in 2.09	CD1 Women 2.52	CD2 Women 2.92	CD3 Women 1.48	CD4 Women 1.77	CD5 Women 1.14	CD6 Women 0.95	E1 I believe th 0.00	E2 It is crucia 5.89	E3 It is appro 2.22	F1 In a relativ 0.00	F2 Primary b 0.01	F3 Women a 0.20	F4 In order to 1.47	F51 believe g 1.25	G1 Women a 0.04	G2 Women e 6.51	G3 The strict 3.19	G4 Dealing w 2.41	G5 Women re2.91	G6 Marriage, 0.09	G7 Female st0.36	H1 On baland 1.99	H2 I am cons 0.70	H3 I have not 4.90	H4 My family 0.46	H5 My curren 1.88

GISE Report 2022

©2022 INWES & KWSE

Taiwan - women vs. men

Sample sizes are 35 for female/non-binary and 27 for male, so the Mann-Whitney metric is also considered.

					Independ	ent Sample	s Test: T-Te	sts							
	Level	ne's Test fo	r Equality of Variances		Descriptive	e Statistics				t-test for	r Equality of	Means			Mann- Whitney U
tatements	L	Sig.	Result	Female/n	o Female/no	Male -	Male - SD	-	df	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig
	Þ	•		n-binary Mean	- n-binary - ▼ SD ▼	Mean	•	Þ	•	Two-Sided p	Difference	Difference	Difference -	Difference - Unner 🔻	(2-tailed)
1 Girls and	1.11	0.30	Equal variances assumed	-	71 0.83	1.41	0.75	1.51	60.00	0.14	0.31	0.20	-0.10	0.71	0.0
2 Female st	0.09	0.77	Equal variances assumed	2	11 0.96	1.67	0.88	1.89	60.00	0.06	0.45	0.24	-0.03	0.92	0.0
3 Women in	4.59	0.04	Equal variances not assumed	2	57 1.09	1.67	0.78	3.79	59.74	0.00	0.90	0.24	0.43	1.38	<" "
34 It is equal	4.76	0.03	Equal variances not assumed	2	54 1.12	1.78	0.89	2.99	59.93	0.00	0.77	0.26	0.25	1.28	0.0
35 Being prol	7.65	0.01	Equal variances not assumed	2	63 1.31	1.78	0.89	3.04	59.20	0.00	0.85	0.28	0.29	1.41	0.0
36 Women in	4.53	0.04	Equal variances not assumed	2	51 1.22	1.81	0.92	2.57	59.98	0.01	0.70	0.27	0.16	1.24	0.0
CD1 Women	5.21	0.03	Equal variances not assumed	2	51 1.20	1.63	0.79	3.49	58.77	0.00	0.88	0.25	0.38	1.39	0.0
CD2 Women	2.34	0.13	Equal variances assumed	2.	43 1.22	1.70	0.87	2.62	60.00	0.01	0.72	0.28	0.17	1.28	0.0
CD3 Women	0.97	0.33	Equal variances assumed	2.	77 1.19	1.78	0.93	3.57	60.00	0.00	0.99	0.28	0.44	1.55	<'00
CD4 Women	2.68	0.11	Equal variances assumed	2.	77 1.21	1.89	0.93	3.13	60.00	0.00	0.88	0.28	0.32	1.45	0.0
CD5 Women	4.37	0.04	Equal variances not assumed	2	46 1.22	1.52	0.80	3.64	58.68	0.00	0.94	0.26	0.42	1.45	<00,
CD6 Women	0.03	0.86	Equal variances assumed	m	51 1.12	2.30	1.03	4.39	60.00	0.00	1.22	0.28	0.66	1.77	<.00
E11 believe th	0.20	0.65	Equal variances assumed	. .	94 0.97	1.78	0.85	0.70	60.00	0.49	0.17	0.24	-0.31	0.64	0.55
E2 It is crucia	0.42	0.52	Equal variances assumed	-	43 0.70	1.70	0.72	-1.51	60.00	0.14	-0.28	0.18	-0.64	0.09	0.0
E3 It is appro	7.32	0.01	Equal variances not assumed	.	89 0.90	2.48	1.34	-1.99	43.22	0.05	-0.60	0.30	-1.20	0.01	0.0
⁼1 In a relativ	0.30	0.59	Equal variances assumed	3.	77 1.31	2.89	1.40	2.56	60.00	0.01	0.88	0.34	0.19	1.57	0.0
-2 Primary bi	0.53	0.47	Equal variances assumed	4	23 1.19	3.33	1.30	2.82	60.00	0.01	0.90	0.32	0.26	1.53	0.0
-3 Women a	0.54	0.46	Equal variances assumed	3	91 1.31	3.15	1.49	2.15	60.00	0.04	0.77	0.36	0.05	1.48	0.0
F4 In order to	8.92	0.00	Equal variances not assumed	4	60 0.85	3.78	1.37	2.74	40.92	0.01	0.82	0.30	0.22	1.43	0.0
F5 I believe g	5.64	0.02	Equal variances not assumed	. .	57 0.88	2.15	1.29	-1.99	43.80	0.05	-0.58	0.29	-1.16	0.01	0.0
G1 Women a	7.15	0.01	Equal variances not assumed	2.	17 1.22	1.59	0.84	2.20	59.34	0.03	0.58	0.26	0.05	1.11	0.0
G2 Women e	2.34	0.13	Equal variances assumed	2	00 1.21	1.59	0.80	1.51	60.00	0.14	0.41	0.27	-0.13	0.95	0.24
33 The strict	5.90	0.02	Equal variances not assumed		66 0.94	1.37	0.63	1.44	59.00	0.16	0.29	0.20	-0.11	0.69	0.28
G4 Dealing w	6.49	0.01	Equal variances not assumed	-	89 1.05	1.41	0.64	2.22	57.12	0.03	0.48	0.22	0.05	0.91	0.0
G5 Women re	10.69	0.00	Equal variances not assumed	2	09 1.34	1.52	0.80	2.07	56.94	0.04	0.57	0.27	0.02	1.12	0.1
G6 Marriage,	2.45	0.12	Equal variances assumed	2	80 1.45	2.00	1.24	2.29	60.00	0.03	0.80	0.35	0.10	1.50	0.0
G7 Female st	5.45	0.02	Equal variances not assumed	3	40 1.06	3.15	1.49	0.75	45.19	0.46	0.25	0.34	-0.43	0.93	0.56
H1 On baland	0.39	0.53	Equal variances assumed	2	00 0.91	1.81	0.74	0.86	60.00	0.39	0.19	0.21	-0.24	0.61	0.49
-12 I am cons	2.85	0.10	Equal variances assumed	2	17 0.95	2.37	1.08	-0.77	60.00	0.45	-0.20	0.26	-0.72	0.32	0.34
H3 I have not	2.69	0.11	Equal variances assumed	2	17 1.10	1.67	0.88	1.95	60.00	0.06	0.50	0.26	-0.01	1.02	0.0
-44 My family	0.52	0.47	Equal variances assumed	÷.	51 0.82	1.48	0.64	0.17	60.00	0.86	0.03	0.19	-0.35	0.42	0.8
H5 My curren	2.22	0.14	Equal variances assumed	,	63 0.91	1.41	0.64	1.08	60.00	0.29	0.22	0.21	-0.19	0.63	0.4(

2022

©2022 INWES & KWSE

116

GISE Report 2022

B-2. By STEM Sector

Comparisons by STEM cluster are shown below.

As there are seven STEM Clusters, there are three analyses carried out:

- **Overall comparisons** using ANOVA, Welch or Kruskal-Wallis tests^{*}. These were for all data (Global) and then by region.
- Letters listed under "Mean is different from..." indicate that the mean associated with each corresponding STEM cluster (as analyzed in the Overall Comparisons) is statistically different from the mean of the cluster reported under "STEM Cluster". Multiple comparison analysis**. Each cluster is assigned a letter code from A to G (refer to STEM Clusters by Letters) Letters are reported only once for conciseness, but differences are valid for each pairwise comparison.

Interpretation of the analyses requires referring to the Multiple comparison tables and then back to the Overall comparison for the actual mean values.

Binary comparisons of each individual STEM Cluster against the combination of all other STEM Clusters. These were for Global only. In the tables below, the overall statistical analyses for all (i.e. Global, and then each region) are included although for several regions the results were not statistically significant.

For both the Overall comparisons and the Binary comparisons, any row in BLUE indicates where the p-value (the probability that the results occurred by chance) is very low, hence indicating the averages and standard deviations are not by chance (Alpha = 0.05), and hence there are possible differences between the STEM areas. The Multiple Comparison table indicates where the difference in mean values is significant, and the first Cluster letter code refers to the highest mean value. * As is the case with t-tests, ANOVA assumes normality of the distribution of the variable to be compared together with homogeneity of the variance of this variable for each group. Alternative tests are displayed as appropriate. p-values reported in columns AF/AJ correspond to the test for either homogeneous or heterogeneous variances, based on the indication in column F. When both parametric (ANOVA/Welch) and non-parametric (Kruskal-Wallis) tests are significant, the parametric alternative should be reported. The Kruskal-Wallis test should be prioritized if at least one of the samples is of size < 30.

**Note: Multiple Comparisons are Bonferroni-adjusted.

NB Detailed statistical analysis results are available on request.

GISE Report 2022

©2022 INWES & KWSE

Global - Overall comparison

The following is an example of multiple comparison analysis carried out. As the table is large, it is shown on two pages. Mean values to responses can be read from this table and other Overall comparison tables.

		ences	SD	2 1.17	1 1.28	7 1.34	5 1.30	1 1.34	1.35	2 1.41	7 1.34	5 1.38	3 1.31	3 1.34	2 1.35	2 1.10	3 0.88	5 1.17	5 1.45	5 1.40	5 1.46	1.41	3 1.18	7 1.21	9 1.27	1 1.21	3 1.22	1 1.35	2 1.53	5 1.32	3 1.01	1 1.03	1.33	2 0.90	1 00
oles Test		atural Scie	Mean	85 2.12	85 2.2	85 2.4	85 2.4	85 2.4	85 2.3	85 2.62	85 2.4	85 2.7	85 2.6	85 2.2	85 3.02	85 2.02	85 1.56	85 2.0	85 3.16	85 3.76	85 3.2	85 3.80	85 1.80	85 2.3	85 2.3	85 2.2	85 2.2	85 2.5	85 3.22	85 2.8	85 2.1	85 2.1	85 2.44	85 1.62	-
ent Sami	s	z	-	1.20 2	1.14 2	1.20 2	1.35 2	1.26 2	1.19 2	1.15 2	1.13 2	1.23 2	1.24 2	1.13 2	1.29 2	0.86 2	0.89 2	1.36 2	1.40 2	1.42 2	1.43 2	1.43 2	1.11 2	1.03 2	1.01 2	1.04 2	1.11 2	1.25 2	1.41 2	1.35 2	0.89 2	0.92 2	1.12 2	0.80	
Independ	e Statistic	umerical	ean Sl	1.93	1.93	2.05	2.41	2.26	2.02	2.00	2.02	2.27	2.30	1.89	2.39	1.61 (1.63 (2.37	2.77	3.45	3.08	3.58	1.77	1.88	1.86 1	1.91	2.12	2.16	2.60	2.79	1.89 (2.02 (2.01	1.57 (ł
	Descriptiv	Maths/N	¥ ∟	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	582	001
		ealth	SD	1.21	1.18	1.24	1.25	1.23	1.22	1.32	1.37	1.36	1.34	1.16	1.39	1.06	06.0	1.25	1.43	1.36	1.55	1.49	1.13	1.20	1.17	1.12	1.24	1.35	1.57	1.35	1.00	1.11	1.36	0.93	1
		ine and He	Mean	2.06	2.23	2.48	2.41	2.24	2.39	2.62	2.58	2.85	2.81	2.14	3.15	2.04	1.65	2.07	3.20	3.89	3.27	3.85	1.81	2.23	2.18	2.08	2.31	2.46	3.10	2.93	2.13	2.27	2.63	1.73	1
		Medici	-	7 168	168	168	168	168	168	5 168	168	2 168	168	168	168	168	168	168	168	168	168	168	168	168	7 168	5 168	2 168	168	168	168	168	168	5 168	168	
		ring	≜ SD	1.2	1.18	29 1.3*	53 1.35	38 1.29	31 1.34	20 1.35	20 1.36	11 1.32	1.35	98 1.26	51 1.38	74 0.97	57 0.9	24 1.32	98 1.45	50 1.47	20 1.49	71 1.50	79 1.10	1.16	11.1	00 1.16	06 1.12	22 1.29	33 1.49	36 1.37	93 0.97	1.0	25 1.35	56 0.88	
		Enginee	wear	527 2.(527 2.(527 2.2	527 2.9	527 2.3	527 2.3	527 2.1	527 2.1	527 2.4	527 2.4	527 1.9	527 2.0	527 1.	527 1.	527 2.1	527 2.9	527 3.(527 3.2	527 3.7	527 1.7	527 2.(527 2.(527 2.(527 2.(527 2.1	527 2.6	527 2.6	527 1.9	527 2.(527 2.2	527 1.1	
		16	- 0	1.19	1.16	1.2	1.1	1.13	1.26	1.25	1.34 (1.35	1.27	1.17	1.4	0.74	0.59	0.91	1.56	1.44	1.6	1.62	1.23	1.1	1.04	1.06	1.05	1.15	1.51	1.35	1.02	1.02	1.3 4	1.01	
		ral, Anima	ean S	1.95	2.03	2.15	2.18	2.2	2.17	2.35	2.4	2.82	2.53	2.05	2.85	1.57	1.23	1.77	2.55	3.27	2.93	3.17	1.8	2.02	1.93	1.93	2.02	2.22	2.62	2.87	1.87	2.02	2.22	1.7	
		Agricultu	≥ -	09	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	1
	d on Mean)		Result	Equal variances assumed	Equal variances not assumed	Equal variances assumed	Equal variances not assumed	Equal variances assumed	Equal variances not assumed	Equal variances not assumed	Equal variances not assumed	Equal variances assumed	Equal variances not assumed	Equal variances not assumed	Equal variances not assumed	Equal variances assumed	Equal variances not assumed	Equal variances assumed	Equal variances assumed	Equal variances not assumed	Equal variances not assumed	Equal variances assumed	The second se												
	ances (base		Sig.	0.34	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.11	0.00	0.09	0.00	0.00	0.00	0.12	0.03	0.04	0.00	0.10	0.00	0.00	0.01	0.02	0.00	0.01	0.74	0.27	0.00	0.00	0.23	
	leity of Vari		df2	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	1903	
	of Homoger		df1 ▶	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	6	9	•
	Tests		Levene Statistic v	1.14	4.52	3.79	3.60	2.83	5.52	9.47	8.88	3.05	1.73	4.48	1.80	4.33	7.32	8.42	1.69	2.35	2.21	4.03	1.77	4.68	8.07	3.06	2.62	3.55	2.82	0.59	1.26	3.11	10.31	1.34	1
			Statements	B1 Girls and	B2 Female st	B3 Women in	B4 It is equal	B5 Being proi	B6 Women in	CD1 Women	CD2 Women	CD3 Women	CD4 Women	CD5 Women	CD6 Women	E11 believe th	E2 It is crucia	E3 It is appro	F1 In a relativ	F2 Primary bi	F3 Women al	F4 In order to	F5 I believe g	G1 Women a	G2 Women e	G3 The stricti	G4 Dealing w	G5 Women re	G6 Marriage,	G7 Female st	H1 On baland	H2 I am cons	H3 I have not	H4 My family	

©2022 INWES & KWSE

GISE Report 2022

••	
\frown	
-	
. =	
-	
<u> </u>	
<u> </u>	
<u> </u>	
-	
<u> </u>	
2	
•	
<u> </u>	
-	
60	
_ C	
<u> </u>	
-	
-	
_	
()	
\sim	

			ġ.		21 S		000	60.0	001	10	001	00	001	10	10	001	00	001	00	5	11.0	00	6	001	001	0.06	0.10	0.01	001	0.18	8	0.28	00	
Kruska	Walli		Asymp. !			ľ			Ŷ	~	~	~	~	~	~	~	~	~	~	~		~		~	~)		~				~	
	ns)		Sig.			10.0	0.04	0.07	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00		0.00	0.13	0.00		0.00	0.00	0.03	0.07	0.01	0.00			0.23	0.00	
	quality of Mea		df2		405.05	407.65	413.95	410.49	407.01	406.76	404.01	405.86		408.07		411.58	420.37	419.97		408.25	406.18	407.46		405.54	405.17	407.29	406.84	409.89	405.93			405.32	405.75	
	bust Test of Ec		df1		U	0 4	0	9	9	9	9	9		9		9	9	9		9	9	9		9	9	9	9	9	9			9	9	
	Welch (Ro		Statistic		010	01.6	2.24	1.97	4.63	10.28	7.24	8.42		4.19		9.74	6.16	10.76		6.24	1.64	4.36		6.93	7.50	2.36	1.97	2.95	8.87			1.37	7.19	
			Sig.	0 53	00.0								0.00		0.00				0.00				0.14							0.21	0.00			01 0
			L L	0 BE	CD-D								5.46		11.52				5.34				1.61							1.40	3.41			-
	ANOVA		Mean	Square 1	07.1								9.28		20.94				11.16				2.02							2.51	3.18			
			df D		-								9		9				9				9							9	9			•
			SS	7 67	10.1								55.68		125.65				66.94				12.10							15.05	19.11			
		es,	SD _	1 07	1 18	133	1.38	1.35	1.23	1.26	1.27	1.21	1.28	1.20	1.37	0.83	0.75	1.10	1.54	1.53	1.54	1.57	1.02	1.20	1.21	1.18	1.20	1.33	1.47	1.29	1.02	1.05	1.27	000
		I Scienc	Mean		2 DV 2	2 27	2.46	2.38	2.16	2.20	2.30	2.38	2.51	2.08	2.70	1.55	1.37	1.70	2.64	3.13	2.93	3.26	1.58	2.11	2.01	1.99	2.11	2.27	2.42	2.59	2.06	2.01	2.27	
		Socia	Ľ	101	101	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	101
		pu	SD	1 24	1 30	1.37	1.29	1.31	1.43	1.29	1.37	1.42	1.40	1.26	1.37	0.96	0.89	1.27	1.45	1.50	1.45	1.36	1.20	1.19	1.29	1.18	1.25	1.25	1.57	1.26	1.02	1.00	1.23	200
		r Tech a	Mean	20 0	0.2	2.38	2.82	2.67	2.47	2.37	2.44	2.80	2.76	2.28	2.81	1.78	1.66	2.29	2.86	3.62	3.27	3.74	1.90	2.17	2.26	2.07	2.27	2.24	2.85	2.93	2.02	2.04	2.16	
		Othe	Ľ	6	5 8	5 7	34	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	2
			Statements	B1 Cide and	B2 Female et	B3 Women in	B4 It is equal	B5 Being proi	B6 Women in	CD1 Women	CD2 Women	CD3 Women	CD4 Women	CD5 Women	CD6 Women	E11 believe th	E2 It is crucia	E3 It is appro	F1 In a relativ	F2 Primary bi	F3 Women al	F4 In order to	F5 I believe g	G1 Women a	G2 Women e	G3 The stricti	G4 Dealing w	G5 Women re	G6 Marriage,	G7 Female st	H1 On baland	H2 I am cons	H3 I have not	1

©2022 INWES & KWSE

GISE Report 2022

CES	
Ĩ	
EN	
PP	
\triangleleft	

\sim
Т <u>с</u> –
~
9
2
_
<u> </u>
Ě
0
0 vo
- 0ve
$1 - 0v_0$
a – 0vo
ea - 0vo
rea - Ove
0rea - 0ve
Korea - Ovo
Korea - Ove
n Korea - Ove
h Korea - Ove
ith Korea - Ove
uth Korea - Ove
outh Korea - Ove
South Korea - Ove

Krusk	a -	Walli	Asym	_ <u>-</u>	0.40	0.33	0.37	0.26	0.46	0.24	0.80	0.67	0.90	0.40	0.67	0.41	0.09	0.73	0.93	0.52	0.94	0.04	0.80	0.81	0.76	0.54	0.79	0.30	0.25	0.01	0.91	0.37	0.34	0.48	0.22	0.88
	uality		Sig.	►	0.34																0.78												0.36			
	est of Ec	**(SI	đđ	Þ	32.70																31.04												29.70			
	bust Te	of Mear	Ĥ	Þ	5																2												2			
	/elch (Rc	-	atisti	►	1.18																0.49												1.14			
			ig. St	►		1	31	58	47	24	82	63	68	40	25	6 1	11	88	67	36		Z	6	76	11	8	82	27	ន	Ξ	87	40		of	ន	8
			ц.	►		<u>6</u>	6	8	92 07	37 0.	14 0.	-0 -0	34 0.	J3 0.	0	6 6	35 0.1	36	19 0.	11 0.		<u> </u>	0	2 0.	32 0.	8	0	0.0	66	<u></u>	37 0.	-0 66		<u> </u>	8	<u>0</u>
	NA**		ean	<u>ĕ</u> ►,		7	1	1	3	2 1	10 10	12 0.1	2 0.	38 1.	20.	0	11.1	<u> </u>	3 0.	9 1.		<u>2</u>	5	4 0	i0 6	0	5	1 1	96	33	20	10		8	2	0
	AN		<u>≥</u> ≒	S. ►		=	=	5		-	0.0	11	0.0	1	=	÷	2.(0	0.	77		÷.	8	0	0.0		0	1	5	ŝ	0	0		-		õ
			s	Þ		1	2 2	36 5	4 5	8	5 1	98	15	98	6	5 6	28 5	0	99	99		80	9 9	1 5	3 5	20	2 5	1 5	27 5	75 5	9	4 5		2 5	2	22
			<u>s</u>	►		8	<u>~</u> ;	ŧ	8.6	9.0	4.5	7.0	3.1	9.3	2.5	5.7	10	1.8	11	7.9		, 9	=	3.7	3.4	5.9	3.5	8.2	ę	, 9	2.8	4.8		6.9	5.6	<u>5</u>
		inces,	s		1.36	0.99	1.28	1.28	1.49	1.07	1.46	1.60	1.60	1.13	1.41	1.16	1.13	1.04	1.13	1.25	0.99	1.06	0.76	1.25	1.25	1.31	1.20	0.93	1.31	0.83	0.92	0.74	0.93	1.30	1.04	1.04
		al Scie	Mean		2.13	2.13	2.75	3.25	3.25	3.00	2.88	2.63	2.63	2.13	2.50	3.75	1.87	1.75	1.87	3.13	4.13	3.63	4.50	188	2.88	3.00	2.50	2.50	3.00	4.13	2.63	2.38	2.50	2.63	2.25	2.25
		Soci	-	•																																
				►	<u></u>	<u></u>	~	~	~		8	9 8	8	8	~	~	8		8		8				8	~	~		~	~	~	~		~		
		ch and	-	Þ	0.5	1	1.2	0.7	10	1.4(1.38	1.29	1.38	1.5(1.2	1.4(0.76	0.79	1.1	1.5	0.53	13	10	1.1	0.53	0.79	0.79	0.79	0.53	0.53	0.76	0.9(1.5	1.2	0.7	13
		her Te	Mea		2.43	2.57	3.00	3.57	3.14	2.43	3.14	3.00	3.29	3.29	2.43	3.57	2.71	1.57	2.29	3.43	4.57	3.14	4.71	2.00	2.57	2.57	2.43	2.43	2.57	4.57	2.71	2.14	2.43	2.57	1.71	2.29
		ð	=	•							2	2	2	2			2		2	2	2				2								2			
		s	s	Þ	8	ę	52	8	4	99	41	44	37	33	8	4	10	4	11	11	23	ę	3	8	14	19	3	11	22	3	8	5	98	8	8	ę
		Science	a	Þ	=				÷		1	1	1	1	,	÷	7		÷	1	0	÷	<u> </u>		÷	÷	;					=	0		ä	<u> </u>
est		atural	l∎ ■	►	2.33	2.14	2.81	2.81	2.66	2.41	3.14	2.84	3.10	3.10	2.48	3.59	2.33	1.66	1.97	3.67	4.47	3.81	4.47	1.91	2.78	2.69	2.53	2.62	2.86	3.93	3.05	2.31	2.00	2.88	1.57	1.98
oles T		Ž	=		8	8	8	88	88	8	28	28	28	28	88	88	28	28	28	28	28	8	8	88	28	88	88	28	8	8	8	8	88	32	32	32
t Sam	istics	<u>a</u>	S	►	32	92.	2 .	.26	90.	11	.29	.30	.25	39	.26	.16	.92	8	.15	.50	.21	₽.	8	13	.12	.15	11	8	.12	.12	.24	.91	.94	21	8	<u>8</u>
enden	ve Stat	lumeri	ean	Þ	6		- -		5	9		3	0	9	2	2	6.	9	-	9	9	6	2	9	2	9	9	2	~	5	-	9	+		4	2
Indep	scripti	Maths/	2	Þ	=	1 T	5	56	2	2,1	2.6	2.6	3.(3.(57	~	11	1:	2,1	3,	4,1	5	4	2.0	2.4	22	5	23	2.4	37	è	2.0	2,	56	=	=
	ä		-		ę	ę	1	1	9	6	19	19	19	19	9	9	19	9	19	19	19	9	ę	19	19	9	9	19	9	9	9	9	19	ę	ę	ę
		Health	S		1.35	1.36	1.22	1.28	1.43	1.20	1.51	1.47	1.34	1.31	1.21	0.97	1.07	0.85	1.09	1.11	0.74	1.34	0.75	1.30	1.16	1.15	1.12	1.24	1.28	0.75	1.32	0.96	1.24	1.09	1.16	1.17
		le and	Mean	•	ŝ	8	.76	ŝ	ŝ	36	.24	38	.24	.29	25	92	8	11	6.	.86	8	6	8	9	36	88	22	.14	ŝ	48	35	1	62	24	8	9
		Aedicir	-	Þ							3	3	3	3		4	2	-	-		4			2	2		~			4	2	2	2			
		-	_	►	21	21	21	21	21	21	21	21	21	21	2	2	21	21	21	21	21	2	2	21	21	21	21	21	21	21	21	21	21	2	2	2
		ling	S		1.14	[]	1.22	1.38	1.43	1.21	1.50	1.46	1.34	1.38	1.58	1.17	1.11	1.01	1.05	1.13	0.82	1.27	0.82	1.29	1.23	1.30	1.22	1.12	1.27	0.87	1.23	1.22	0.88	1.29	0.89	1 8
		nginee	Mear		2.36	2.02	2.69	2.90	2.62	2.45	2.93	2.90	3.21	3.24	2.98	3.62	2.55	1.83	1.98	3.71	4.36	3.40	4.36	2.29	2.81	2.86	2.67	2.76	2.62	4.31	2.83	2.33	2.10	2.62	1.60	2.17
			=	•	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		*	ß	►	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
		, Anim	5	Þ		-																														\vdash
		ultural	Mea		-	Ļ	-	-	-	-	1	1	1	1	-	-	+	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Agric	=	P																																
	se		lesult	►	qual vá	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual vá	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va	qual va
	/arian(_	.i	►	5	ш 	<u>ш</u>	<u>ш</u>	<u>ш</u>		1	9 E	9 8	Ξ t	ш 		ш 	ш —	ш 	2 E	<u> </u>	ш 	ш —	L L	<u>ш</u>	ш 	ш 	ш 	ш +	ш.	ш 	2	н Н	ш —		ш
	ity of	Mean	S	►	8	8	80	0.4	6	0.7	0.7	0.8	0.8	0.8	5	80	0.2	0.9	6.0	0.1	0.0	0.2	8	0.4	0.3	0.4	0.5	0.4	0.2	0.0	6	00	0.0	6.0	9.0	9.0
	nogene	nsed on	df.		149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149	149
	of Hon	(bá	£	•	2	2	9	9	9	9	9	9	9	9	2	2	9	9	9	9	5	2	2	2	2	2	9	2	9	9	9	2	2	2	2	2
	Tests		ener	tatieti c ∢	8	=	8	5	8	51	28	36	35	41	5	4	32	12	22	78	21	3	\$2	92	14	91	2	06	36	22	54	20	35	8	6	62
			Stat Lt	emo S	B1G2.	B2 F(2	B3 W0.	B4 It 1.	B5 B.1.	B6 W 0.	CD1 10.	CD2 10.	CD3 10.	CD4 10.	CD5 1	CD6 10.	ETTH1.	E2 It 0.	E3 It 0.	F1 In 1.	F2 P12.	F3 W1.	F4 In 0.	F5110.	G1 M1.	G2 M0.	G3 TI0.	G4 D 0.	G5 M1.	G6 M2.	G7 F11.	H1 0 2	H21 (2.	H3 I 10.	H4 M 0.	H5 M 0.

S
\Box
Ā
Ä
H
₽Ъ

_	1		E	►	11	99.0	0.20	.52	.50	.57	11	0.20	50	.42	.61	52	.14	101	00	.40	.14	90	11	98.	.50	98	.45	.53	08	00.0	.81	.61	.62	8	65	भ
8	ty Wa		As	<u>ч</u>	11		-	0)	39 0	19 (11	94	-	-	_	01 0	03	10 0	-	-	-		59			0			01 (0	-	-	H		8
	fEqual		ŝ;		8 0.					8 0.	5 0.	7 0.	7 0.				7 0.	5 0.	7 0.					5						5 0.						4
	Test o	leans)	윩		148				1	142	143.	143.	143.				154	14	142					14						144.1						151
	Robust	ef	뵨	Þ								Ű	Ű				•																			
	Welch (Statisti	c 🖣	1.75					1.06	1.47	1.72	2.34				3.19	2.40	1.79					0.70						3.24						1.95
			ig.	•		.82	23	.67	.76					.38	<u>.</u> 65	54				.33	.16	80'	19		39	96	57	61	19		.84	80	.43	33	99	
				Þ		49 (36	.67 (56 (07 (2	8				15 (55	91 (48 (90	24 (80 (75 (45 (46 (52 (00	8	8	
		N	ean	►		65 0	12 1	08 0	89 0					84 1	2	47 0				22 1	95 1	87 1	21 1		26 1	24 0	90 0	02 0	36 1		83 0	52 0	01 1	33	67	
		A	2	× S		0	2	-	0		_		-	-	-	-				2	2	3	ŝ		-	0	0	-	2		0	0	-	~	-	
			* 5	•		9 0	73 6	9 9	9 9				_	04 6	99	9				33 6	69 69	23 6	25 6		4 6	3 6	1 6	2 6	16 6		9 0	1 6	9 6	9 20	4 6	
-		133	S	•		3.5	12	6.4	5.3			_	_	1	6.2	<u></u>				13	17	23	19		1.1	1.4	5.4	6.3	14		5.0	31	9.0	4	4	\vdash
		nces,	S		1.18	1.10	1.24	1.31	1.26	1.00	1.16	1.18	1.16	1.27	1.10	1.29	0.59	0.46	0.74	1.39	1.35	1,41	1.48	0.89	1.14	1.04	1.09	1.21	1.23	1.38	1.27	1.02	1.14	1.35	1.04	1.13
		al Scie	Mean	•	1.76	1.85	- 38	2.08	2.14	1.72	1.95	9	53	2.38	6	33	1.30	1.15	1.36	2.15	2.59	544	273	1.49	1.92	0/1	111	1.93	107	1.98	2.35	1.96	1.90	17	2	6/
		Socia		F		, o		5	2		2	5	5	2	م	5		5	9	2	5	5	5		5		2	9	5	5	2	, o	2		5	
			-	Þ	;	ę	ę	10	10	10	10	ę	ę	9	ę	ę	10	10	10	9	ę	Ģ	Ę.	ę	9	ę	10	10	10	9	10	ę	10	ę	ę	ę
		and	S		0.88	1.17	1.25	1.37	1.47	1.37	1.22	1.36	1.55	1.52	1.32	1.35	0.31	0.63	1.22	1.18	1.45	1.27	1.17	0.88	0.79	0.88	0.75	1.23	1.10	1.52	1.37	1.02	0.79	1.20	0.92	0.69
		r Tech	Mean	4	1.46	191	1.82	2.50	211	5.04	2.18	53	88	00	2.25	257	111	1.39	1.82	1.93	543	2.25	2.54	154	1.54	1.61	1.50	1.96	1.64	00	50	89.	191	6/ 1	99	143
		ŧ		•																																
			-	Þ	28	28	28	28	28	28	28	8	38	28	8	8	28	28	28	28	38	28	28	38	28	28	28	28	28	28	28	38	28	~	8	8
		ences	5		1.20	1.41	1.29	1.20	1.19	1.25	1.17	1.9	1.37	1.28	1.30	1.30	0.55	0.56	0.74	1.49	1.37	1.49	1.55	1.42	0.92	1.02	1.06	1.13	1.26	1.69	1.38	0.92	0.85	1.36	0.92	0.92
		Iral Sc	Mean		1.89	2.02	2.07	2.24	2.36	1.82	2.00	1.91	2.64	2.65	2.02	2.58	1.25	1.20	1.44	2.55	3.07	2.44	2.91	1.82	1.69	1.76	1.64	1.85	1.93	3.05	2.62	1.84	1.62	1.96	1.55	1.53
es es		Natu	L	•	9	5	5	5	9	2	2	5	5	5	<u>م</u>	2	9	2	5	5	2	5	5	5	9	5	9	9	5	5	5	<u>ې</u>	5	5	5	5
amp	<u>8</u>		[Þ	0	1 5	9 5	9 5	4 5	2 5	3 5	<u>ې</u>	7 5	4 5	2	8	0 5	3 5	7 5	7 5	9 5	9 0	2	5	2 1	8	2 5	1 5	1 5	4 5	8 5	4 5	7 5	Ĩ	-	<u></u>
dent	Statist	nerica	5	•	1.2	Ŧ	11	1.2	1.2	11	1.0	=	13	1.3	1.2	1.2	0.8	0.8	0.9	14	13	1.4	14	1	11	0.8	1.0	1.2	1.3	1.4	1.3	0.9	0.9	7	8	Ŧ
eben	riptive	ths/Nu	Mear		1.88	1.87	2.04	2.26	2.25	1.92	2.19	2.38	2.49	2.65	2.07	2.65	1.43	1.40	1.64	2.37	2.91	2.70	2.71	1.62	2.00	1.67	1.85	2.17	2.26	2.34	2.44	1.82	1.83	2.10	1.51	1.90
≝	Desci	Ma	_	•	66	6	66	66	66	66	66	6	66	66	6	66	66	6	66	66	66	66	66	6	66	6	66	66	6	66	66	6	66	8	6	8
		alth		•	60	60	22	11	17	19	Ħ		35	8	Ħ	32	78	4	60	19	5	34	6	13	12	6	14	22	33	99	37	9	60	-	200	5
		nd He	S	Þ	7	=		-	1		1						0.	0	1	÷			-	÷		=	-	77		77	-	÷	÷	-	õ	Ŧ
		icine a	Mea		2.02	1.91	2.26	2.15	2.26	1.91	2.54	2.33	2.78	2.50	2.24	2.63	1.50	1.48	1.59	2.00	2.52	2.02	2.33	1.72	1.76	1.80	1.89	2.13	2.09	2.52	2.37	1.93	1.98	2.43	1.65	19
		Med	_		46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46
				•	45	15	40	31	30	44	37	42	89	31	30	40	01	53	80	36	47	46	54	4	90	5	.12	18	34	64	32	8	33	¥.	8	5
		eering	a	۲		2 1		8 1	1	1	4 1	7	7	9 1	-		0 0		7 0	5 1	-	2 1	6	6	9 1	~	9 1	2 1	9	1	5 1	9 1	3 0	5	5	
		Engin	¶ ₽	•	2.1	1.9	2.3	2.3	2.4	2.2	2.3	24	2.7	2.6	-1-9	2.6	1.4	1.1	1.3	2.2	2.9	2.8	3.0	1.6	1.8	1.7	1.8	2.0	2.2	2.5	2.5	1.8	1.8	22	14	,
			_		99	99	59	99	99	99	99	58	59	99	58	59	99	99	99	99	99	99	59	59	99	99	99	99	99	99	99	59	99	58	58	58
		imal		•	1.17	1.08	1.15	11	1.14	1.16	1.2	1.43	1.31	1.27	1.28	1.42	0.6	0.41	0.85	1.46	1.34	1.57	1.55	1.06	1.19	1.05	1.09	1.05	1.25	1.52	1.4	1.08	1.11	3	0.83	0.97
		al, An	an	Þ	1.84	1.76	1.84	2.24	2.05	1.82	2.18	2.47	2.82	2.53	2.08	2.76	1.42	1.13	1.66	2.16	2.79	2.47	2.63	1.55	1.92	1.76	1.87	1.84	2.32	2.29	2.66	1.74	1.89	1.89	1.45	1.66
		icultur	<u>ه</u>	•	38	38	33	38	38	38	38	8	38	38	8	8	38	38	38	38	8	38	38	8	38	33	38	38	38	38	38	38	38	8	8	8
_		Ag	_				-	-						E								E	_				-				-		E		_	
	ces		Result	•	qual v	qual va	cqual va	cqual va	cqual va	qual v	qual v	qual v	qual v	iqual va	iqual va	iqual va	qual v	qual v	qual v	iqual va	qual va	qual va	qual va	qual v	equal va	qual va	cqual va	cqual va	qual va	qual v	qual va	cqual va	iqual va	dual va	qual va	qual v
	Varian		[Þ	4 E	4		7 E	9	2 E	-	-	1	2 E	-	4	0	0	0	6 E	9	0	4	2	2 E	4	6 E	-	-	0	2 E		6 E	5	2	4
	eity of	n Mean	<u>Si</u>	•	0.0	0.1	0.1	0.3	0.2	0.0	0.0	3	0.0	0.5	9.0	<u> 9</u> .0	0.0	0.0	0.0	0.0	0.9	0.2	0.2	8	0.4	0.6	0.6	0.8	0.3	0.0	0.8	0.9	0.0	8	0.2	3
	nogen	ised of	Ş		429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	429	4 2	429	6 3
	of Hor	ğ	£	-	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	وي	9
	Tests		evene	tati 🔻	11	61	49	60	23	49	9/	2	69	98	75	8	96	54	09	#	28	44	34	51	00	11	89	50	19	50	48	19	20	1	31	₽
		-	Stat Le	× I	31 G 2.	32 F(1)	33 W 1.	34 It 1.	35 B.1.	36 W2.	:D1 12.	:02 12.	03 2.	D4 10.	D5 10	D6 10.	1115.	2 lt 9.	3 lt 3.	1 In 2.	2 PI0.	3 W 1.	4 In 1.	5112	51 M 1.	32 MO.	33 TIO.	34 D 0.	5M1.	36 M 3.	37 F(0.	<u>1100.</u>	121 (2)	E	4 M 1	15 M 2.
	_			-			_				-	-	-	-	-	-						_		_	_	_	-	_	_	-	-					

Africa - Overall comparisons (without late responses)

CES	
Ē	
ä	
E E	
$\overline{}$	

comparisons
0
verall
\circ
Ī
India

, Mus	÷	Wa	Asyn		0:0	0:0	0:0	0.4	0.0	100,	8	<001	8	0.1	0.0	0.0	0:0	0.8	0.7	0.3	8	10	8	0.6	<.001	<001	0.0	<.001	8	0:0	0.7	0.1	0.4	8	5	0.1
	quality		Sig.	Þ				0.32							0.05	0.00					0.01		0.0			0.00	0.01	0.00	0.01		0.66					
	est of Ec	ans)	df2	►				76.84							75.45	75.67					76.37		76.42			76.15	76.4	75.75	77.58		76.94					
	obust T	of Me	£	►				9							9	9					9		9			9	9	9	9		9					
	Velch (R		tatisti	►				1.20							2.20	3.49					3.34		3.45			4.77	3.01	4.21	3.18	_	0.69					
	2		Sig. S	►	13	.02	.02		20	8	<u>10</u>	90	.01	.13			8	.91	.75	36		Ŧ		8	00.					00.		60	.73	2	S	39
			ш	►	.65 0	60 0	61 0		42 0	50	94 0	60 0	98 0	.65 0		_	91 0	35 0	58 0	0 60		72 0		48	90 0					39 0		.85 0	60 0	8	=	0 0
	NOVA		lean	<u>ا</u>	02	38 2	59 2		06 1	8	44 2	21 3	86 2	20 1			29 1	31 0	12 0	94		8		56	.16 5					.06 3		32 1	49 0	5	45 2	84
	A		- *	S ►	2		3		2	4	3	4	3	2			-	0	1	-		~			5					9		1	0	-		0
			SS	►	2.12 6	0.30 6	1.57 6		2.36 6	9.01 6	0.67 6	5.28 6	3.15 6	3.22 6			73 6	86 6	71 6	1.65 6		1.81 6		36	0.96 6					6.36 6		.92 6	96 6	16	72 6	05 6
			s	►	6 1	3 2	9 2	2	2 1	7 2	3 2	6 2	6 2	0 1	3	-	0	7 1	2 6	1	2	3		7	2 3	0	0	-	1	1 3	-	1 7	9 2	6		2
		ciences	5	►	10	11	1.2	1.3	1.1	=	÷	1.1	1.1	1.2	1.2	1.3	0.9	1.0	1.5	1.4	1.5	1.5	1.5	,	0.9	0.9	0.9	0.9	1.0	1.3	1.3	0.9	0.7	6:	8	6
		ocial So	Me	Þ	2.09	2.16	2.44	2.62	2.27	2.36	2.16	2.29	2.29	2.31	2.11	2.91	1.69	1.82	2.44	2.71	3.40	3.27	3.53	1.67	1.98	1.96	2.00	2.11	2.04	2.84	2.78	2.07	2.09	2.07	1.67	1.73
		š	=		45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45
		P	S	Þ	1.04	1.24	1.12	1.33	1.19	1.35	.98	1.24	1.13	1.24	1.13	1.27	.85	76.(1.39	131	9	1.16	103	.95	1.02	1.06	.87	.95	.91	1.29	.93).76).74	88	92	.87
		Techa	lean	►	96	12	15		73	5	32	12	. 35	12	. 00	12	35	35 (. 11		4		2		19	19	96 (12 (12 (. 69	98	11	38	8		2
		Other	~	►	,	2.	2.	2	2.	2	÷	2.	2.	2.1	2.(2.1	1	1.	2.	2.	4.(3	4		2.	2.	1.	2.	2.	2.(3.(1	2.(5	=	-
			_	►	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	8	26	26	26	26	26	26	26	26	26	8	8	26
		ences	S		1.11	1.18	1.12	1.20	1.17	1.15	1.20	1.13	1.23	1.09	1.29	1.35	0.87	0.85	1.29	1.30	1.56	1.45	1.46	0.99	1.06	1.20	1.08	1.15	1.21	1.42	1.27	0.87	0.99	0.97	0.96	0.89
_		ral Sci	Mean	P	1.88	2.00	2.02	2.12	2.03	2.04	2.18	2.17	2.36	2.18	2.19	2.61	1.79	1.66	2.44	2.49	3.21	3.02	3.33	1.76	2.19	2.25	2.11	2.25	2.36	2.72	2.69	1.94	2.12	2.06	<u>8</u>	1.90
is les		Natu	-	►	6	6	6	6	6	5	6	6	6	6	6	6	6	6	6	6	6	6	6	5	6	9	9	6	6	6	6	6	6	5	5	6
Sample	tics	_	S	F		-	3	9	2 8	9	9	1 8	0	2 8	12 8	1 8	00	6	6	2	-				2 8	1 8	9 8	4 8	7 8	12 8	3	1 8	1 8	2		5
dent	e Statis	Imerica	an	►			1	1	12	=	1	1	1	1.1	1.0	12	0	0.0	13	1	1.1	1.1	,	-	0.0	0.0	0.0	1.0		13	13	0.0	0.0	7	3	ë
Idepel	scriptiv	laths/N	Š	►	1.86	1.86	1.94	2.37	2.16	1.97	1.81	1.82	2.10	2.11	1.75	2.17	1.57	1.67	2.56	2.71	3.44	3.05	3.67	1.80	1.77	1.82	1.85	2.03	2.02	2.53	2.83	1.86	2.03	1.92	1.5	1.67
_	ē	2	-		414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	414	44	414
		Health	S		1.46	1.33	1.35	1.41	1.26	1.23	1.02	1.21	1.43	1.38	1.10	1.58	1.02	1.06	1.53	1.32	1.18	1.53	1.38	0.94	1.16	1.04	1.06	1.30	1.28	1.51	1.26	0.66	0.87	1.25	1.12	0.76
		ie and	Mean	•	11	53	09	.47	30	8	11	30	11	09	16	02.3	02.	02.	50	20	4	11	13	<u>.</u>	20	23	30	.43	20	.27	.83	.67	00	31	8	63
		Medicir	-	►										~	-	2	_	-	~	,	4	,	4		2	2	2			,	~	-	~			
		_		►	30	30	30	30	30	30	30	30	30	30	1 30) 30	30	30	30	30	8	30	30	8	9 30	30	2 30	2 30	30	30	7 30	1 30	30	8		8
		ering	=	►	1.02	1.1	1.2	1.3(1.2(₽	1.0	11	11	1.18	1.1	1.3(0.8(0.96	1.4(1.3	1.5(1.40	1.5	1.1	0.8	0.9(0.92	0.92	1.0	1.28	1.3	0.8	0.9	ê.	8	<u>6</u> .0
		Engine	Meä		1.70	1.83	1.98	2.37	2.11	1.98	1.76	1.83	2.02	2.04	1.77	2.24	1.48	1.66	2.45	2.67	3.35	3.03	3.43	1.79	1.65	1.66	1.71	1.77	1.86	2.35	2.72	1.75	1.95	1 80.	1.55	1.69
			-	-	288	288	288	288	288	288	288	288	288	288	288	288	288	288	288	288	288	38	38	288	288	288	288	288	288	288	288	288	288	588	8	88
		limal	S	•	0.99	1.17	11	0.94	0.97	1.29	1.32	0.71	0.94	1.32	1.14	1.18	0.53	1.06	1.05	1.7	1.51	1.58	1.58	1.29	0.63	0.74	0.79	0.99	0.67	1.41	1.2	0.99	0.79	1.03	100	0.94
		ıral, Ar	lean	►	1.9	2.4	2.1	2	2.4	2.1	2.2	1.5	2	2.2	1.8	2.5	1.5	1.7	2	2.7	3.6	3.4	3.6	1.9	1.8	1.9	1.8	2.1	1.7	3	2.9	2.1	2.2	2.2	2	2
		gricult	-	►	9	9	9	9	10	9	9	10	10	10	10	10	9	10	10	9	9	9	9	9	10	10	10	10	9	10	10	10	10	9	ę	9
		A	ŧ	►	l va	ev 1	l va	l va	l va	E۸	ev 1	R Va	EV I	ev 1	l va	l va	ev 1	l va	l va	R	l v	EN I	Ň	EV	l va	l va	l va	l va	l va	l va	l va	Na	R	B	5	B
	iances		Rest		Equal	Equal	Equal	Equa	Equal	Equal	Equal	Equal	Equal	Equal	Equa	Equa	Equal	Equal	Equal	Equal	Equa	Equal	Equa	Equal	Equal	Equa	Equa	Equa	Equa	Equal	Equa	Equal	Equal	E	Egua	B
	of Var	ean)	Sig.	-	0.18	0.35	0.18	0.03	0.69	0.88	0.48	0.15	0.08	0.37	0.03	0.02	0.29	0.70	0.28	0.74	0.00	0.46	0.00	0.85	0.10	0.00	0.03	0.00	0.00	0.49	0.02	0.95	0.44	0.17	0.44	0.26
	geneity	d on M.	df2	►	36	95	95	95	95	362	362	362	362	362	32	32	36	362	395	362	35	36	32	362	395	362	362	95	35	362	95	362	395	36	58	362
	Homo	(base	ŧ	►				8								8									~~~~	8	8	8	~							
	Tests of		ene	if ⊧	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	20	9	9	9	9	9	9	9	9	9	ى	2	9
	_	_	Ite Lev	Stal	Gi 1.50	Fe 1.11	W1.47	lt i 2.29	Be 0.65	W(0.39	1 V0.91	2 V 1.60	3 V 1.90	4 V 1.08	5 V 2.42	6 V2.54	1 b 1.22	lt i 0.64	lt i 1.24	In 0.58	Pri 3.68	W(0.95	In 5.31	1 b 0.44	W 1.79	W 3.93	Th2.35	De 3.90	W 3.62	Mt 0.91	Fe2.53	Or 0.28	l a 0.98	h1.52	M 0.98	My 1.30
			Sta	È	8	83	8	8	8	8	8	9	8	ß	8	S	Ξ	E	£	Ы	5	£	E	F5	5	3	З	64	3	S	61	Ξ	H2	£	Ŧ	£

CES
Ā
E
PP

\sim
0
2
·5
õ
E
9
0
0
-
•
-
ä

Krusk	al-	Walli	Asym	d j	•	0.16	0.69	0.73	0.22	0.09	0.48	1.00	0.46	0.91	0.35	0.71	0.80	0.74	0.04	0.21	0.31	0.07	0.34	0.46	0.41	0.38	0.69	0.59	0.49	0.80	0.53	0.54	0.85	0.62	0.79	0.27	0.93
	quality		÷.		Þ	0.01							0.07				0.74					0.25		0.59				0.08									
	est of E	ans)	Ę	[Þ	26.33							24.85				23.4					23.34		23.35				25.53									
	obust T	of Mei	Ŧ	[Þ	9							9				9					9		9				9									
	Velch (R		tatisti d	[•	3.35							2.29				0.58					1.40		0.79				2.16									
	_		sig.		Þ		.72	.75	1.26	.18	.53	00		.90	.36	.80		62.0	.08	.30	.38		33		5	.43	.68		.59	.81	.50	.50	.87	99'	62.0	.19	16
				[Þ		62 0	57 0	.30	.51 0	85 0	00 1		36	11 0	51 0		53 0	.94 0	22 0	0 20		.15 0		8	66	.66 0		.78 0	50 0	90 06	90	42 0	69	52 0	48	8
	NOVA		lean F	quar	Þ		.05 0	08	1	.16 1	.42 0	.18 0		.71 0	÷.	90 06		63 0	37 1	.25 1	.16		84 1		3	.57	10 0		20 0	91 0	.85 0	.15 0	53	.03	4	22	09
	A		-		•			-		2		0				0		0	1	1	-				_	_	1		-	0	-			-		-	
			ss	[•		6.29	6.46	12.23	12.95	8.52 (1.08		4.28	12.67	5.42		3.79 6	8.23 (7.52 (6.97		11.04		7.71	9.41	6.62		7.18	5.48	11.12	6.91	3.18	6.20	6.86	7.34	3.02
		es,			+	84	98	83	38	38	.37	04	4	47	8	.60	8	.22	.75	89	8	38	.51	33	82	19	.64	.75	.17	.64	33	82	.47	.51	19	82	4
		Scienc	ean	[•	20	57 1	33	50	50	57 1	17 2	8	8	17	17 1	8	50 1	83 (00	20	17 (0	33	17	22	50	50 1	33 1	11 1	50 1	33	57 (8	57 1	8	22	-
		Social	ž		•		2	2	3	2	2	3.	5	2	4	2	÷	2	1	2.1	3	4.	3	4.	-	2	2	2.	2.	2	2	3	2	2	2	÷	<u>``</u>
			-		•	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	ى	9	9	9	9	9	9	9	9	9	ى	و	<u>0</u>
		1 and	S			1.56	1.50	1.55	1.26	0.88	1.21	1.25	1.42	1.32	1.32	1.38	1.12	0.78	0.99	0.86	1.26	0.97	1.19	0.66	141	1.29	1.50	1.41	1.24	1.41	1.28	1.07	0.77	1.13	1.34	1.08	133
		ler Tech	Mean		•	2.62	2.92	2.92	2.92	2.54	2.85	3.31	3.23	3.31	3.08	2.69	3.92	2.46	1.85	1.92	3.62	4.46	3.62	4.54	2.15	3.00	3.08	2.85	2.77	2.85	3.85	3.85	2.62	2.54	3.15	2.00	2.46
		Ę	_		•	13	13	13	13	13	13	13	33	13	13	13	е С	13	13	13	33	13	13	13	<u>۳</u>	13	13	13	13	13	13	13	13	13	9	е С	121
		s	_		•	26	35	32	32	36	46	43	9	ह	. 8	. 88	. 12	21	93	11	8	. 4	. 66	82	- 19	8	30	25	29	45	52	. 12	14	28	£	62	÷ ا
		Science	an Sl	[•	6 1.	1.	2 1.	1.	1 1.	1 1	5 1.	+	1.	1	3 1.	1	9 1.	4 0.	4 1.	0	7 0.	2 1.	1	1.	.1	7 1.	9 1.	1 1.	5 1.	1.	+	1.	1.		<u> </u>	-
Test		latural	₩ N	[•	2.3	2.6	3.0	2.8	2.5	2.8	3.1	2.8	2.9	3.0	2.1	3.6	2.8	1.8	2.2	4.1	4.4	3.6	4.5	2.2	2.7	2.6	2.4	2.3	2.7	3.3	3.4	2.7	2.7	8	1.5	22
nples		-	=		•	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	\$	45	45	45	45	45	45	45	45	45	45	45	45
ent Sar	atistics	rical	s			0.52	1.37	1.64	0.84	0.82	1.51	1.72	0.75	1.37	1.37	1.60	1.72	0.52	0.98	1.05	1.21	0.82	1.33	0.84	0.75	0.52	0.63	0.52	0.75	0.89	1.83	1.21	1.17	1.05	1.47	1.26	1.03
pende	otive St	s/Nume	Nean		4	133	33	50	3.50	3.33	533	3.17	8	5.67	2.67	2.17	3.17	233	2.17	097	3.67	1.67	3.17	1.50	=	1.67	00	1.67	1.83	00	83	19:67	3.17	3.50	8	8	R
Inde	Descrip	Math			•											.,						7		7			7										
		ŧ	-	[•	4 6	9 0	9	9 6	7 6	4 6	1 6	7 6	9	2 6	4 6	9	7 6	1 6	8 6	9	9 9	9 (2 6	9	9	8 6	9 6	2 6	2 6	9 9	9 .0	9	2 6	2	2	<u> </u>
		nd Hea	8		►	1.2	1.2	1.3	1.2	1.1	1.2	1.3	1.4	1.5	1.5	1.2	1	1.0	0.9	1.0	1.0	0.5	1.1	0.8	₩.	1.2	1.2	1.1	1.2	1.3	1.4	1.1	1.0	1.2	1.4	2.0	=
		icine a	Mea		•	2.08	2.47	2.71	2.74	2.08	2.61	3.26	3.18	3.08	3.29	2.08	3.87	2.79	1.63	1.97	4.03	4.84	4.16	4.63	1.92	2.79	2.76	2.32	2.47	2.87	3.24	3.53	2.53	2.50	3.32	1.61	2.18
		Med	_			38	38	88	8	38	38	38	8	8	8	38	8	38	38	38	8	8	38	38	8	8	38	38	38	38	38	8	8	38	8	æ	8
			s		4	1.46	1.17	1.34	1.23	1.14	1.09	1.46	1.59	1.28	1.29	1.27	1.37	1.08	0.54	0.00	1.09	0.61	1.25).55	59	1.27	1.24	1.38	1.26	1.20	1.30	0.98	1.24	1.17	1.64	1.10	1.15
		ineerin	ean		•	56	91	22	16	72	60	90	16	91	41	94	20	72	31	69	19	78	91	78	끃	8	94	66	66	91	72	8	8	72	8	28	3
		Eng	2		Þ	2	2	3	2	2	3	3	m i	2	33	1	eri -	2	1	1	4	4	3	4	-	2	2	2	2	2	3	4	2	2	eri I	-	
		_	=	[►	1.17 32	1.17 32	0.82 32	0.41 32	0.98 32	1.05 32	1.51 32	1.51 32	1.97 32	1.63 32	1.17 32	1.9 32	1.22 32	0.52 32	0.75 32	1.03 32	0.82 32	1.1 32	1.17 32	1.47 32	1.21 32	1.21 32	1.21 32	1.17 32	1.38 32	1.22 32	0.82 32	1.03 32	1.05 32	0.55 32	1.05 32	1.47 32
		, Anima	S		*		17	67 (83	17 (. 9	33	8	9	. 19	11	~	. 9	33 (17 (. 19	33	4	11	` ജ	. 19	. 19	. 19	. 83	. 9	9	67 (8	5	5	9	
		ultural	Mean			1.	5 2	3 2		3 2.		3.	~	<u> </u>	2	5 2		2	1	3 2.		4		4.	2	2	3 2	3 2	5 2	2		3	5	2		~	5
		Agric	_		•							9	Ĩ					•	•	•	Ű	Ű	Ű	Ĵ	Ĩ	Ť	•	•		•				Ű		Ű	
	se		esult	[•	qual vi	qual va	qual va	qual vi	qual va	qual va	qual va	qual vi	qual va	qual va	qual va	qual va	qual vi	qual va	qual vi	qual va	qual va	qual va	qual vi	qual va	qual va											
	Varianc	_	<u>~</u>	[•	3 E	4 E		2 E	7 E	<u></u> 6	7 E	ш С	7 E	ш 9	1 E	4	<u> </u>	8 E	6 E	Ū 9	Ŭ 0	9 8	2 E	ш 6	ш 9	8 E	4 E	4 E	2 E	3	ш С	9 9	9 9		ш 	<u> </u>
	eity of \	n Mean	Sig	[+	0.0	0.2	0.2	0.0	0.1	0.1	0.2	0.0	0.4	0.4	0.9	0.0	0.2	0.3	0.7	0.4	0.0	0.0	0.0	0.2	0.2	0.0	0.0	0.6	0.3	0.3	0.1	0.4	0.7	5	0.4	80
	nogen	ased or	Ş			139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	£	139	139	139	139	139	139	139	139	139	139	139	139
	s of Hoi	ğ	ŧ		-	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	Test		evene.	Statisti	•	.38	34	26	10	54	.48	27	36	34	36	1.36	.28	26	80	157	16.	.39	.94	.58	.24	.30	.92	11	171	.18	.16	89	16	1.56	8	.93	8
			Stal	tem (, ► S	B1 (2	B2 F1	B3 V1	B4112	B5 E1	B6 V1	CD1	CD2 2	CD3C	CD TO	CD5 (CD62	E11	E2111	E3 1(0	E	F2 P4	F3 V1	F4 112	F51	611	G2 V1	G3 12	G4 [0	G5 V1	661	GTF	Ξ	H2 0	H3	H4 NC	H5 NG

CES	
Ī	
E	
API	

Europe – Overall comparisons

No statistically significant results. The sample sizes were too small to compare.

Kruska	Wallis		Asymp.	Sig.	0.40	0.46	0.57	0.35	0.62	0.65	0.6(0.5	0.35	0.36	0.7	0.15	0.1.0	0.0	0.1	0.10	0.12	0.1.0	0.16	0.6	0.46	0.48	0.35	0.37	0.45	0.32	0.25	0.35	0.54	0.42	0.15	0.78
	quality		ŝ	F																0.06				0.63				0.28							0.53	
	est of E	ans)	df2	Þ																7.272				7.073				7.516							6.875	
	lobust T	of Me	듁	Þ																٩				9				9							6	
	Velch (F		òtatist	<u>۲</u>																3.60				0.75				1.56							0.93	
	F		ŝ	F	.38	.48	.56	.32		8	.58	85.	.36	37	.82	20.0	9.	.17	E			.12			.44	.48			.40	128).24	.41		84.		8
			u.	Þ	60'	.93	.82	1.20		.73	8	62.0	13	111	.48	207	88	69.1	18.			62.1			66'(.93			50.1	1.27	.38	1.04		16		120
	NOVA		Mean	, ₽	2.83	2.14	1.76	2.26		1.84	1.61	1.62	2.44	2.41	62.0	2.95	2.43	0.72	3.58			3.42			2.13	2.13			2.59	3.04	2.51	1.15		231		0.74
			*	Þ						6							<u> </u>								9				<u> </u>							
			ន	Þ	17.00	12.85	10.59	13.55		11.02	9.64	9.71	14.65	14.48	4.76	17.70	14.60	4.31	21.46			20.49			12.77	12.77			15.57	18.26	15.07	6.93		13.89		4.45
		es,	ទ	+	.68	.48	.51	.27	.67	.54	.46	- <u>5</u> 0	41	.54	.45	.36	<u>.</u> 01	.27	.15	.76	.70	63	.61	.28	.65	.65	.63	.74	.70	.45	.33	.05	-97	.50	.50	36
		Scienc	Mean	F	1	21	86	5	62	8	8	5	86	8	88	8	5	07	64	2	43	21	3	54	1 19	36	21	50	1	43	8	21	62	36	36 0	8
		Social	-	F	2	2	2	m	5	5	5	5	2	2	2	eri I		, -		e e e e e e e e e e e e e e e e e e e	m	ŝ	m	, -	2	2	2	5	2	5	5	2	1	2	1	-
				Þ	14	14	14	4	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	4	14	4
		h and	8	Þ	1.73	1.40	1.46	1.07	1.38	1.89	1.57	1.53	1.80	1.62	1.07	1.40	1.21	0.76	1.50	1.21	1.13	1.57	1.46	1.99	1.51	1.46	1.77	2.04	1.50	1.51	1.35	1.21	0.79	1.53	1.21	1.25
		her Tec	Mear		3.00	3.57	2.86	3.86	3.71	3.29	2.86	3.00	2.71	2.57	2.86	2.43	1.86	1.29	3.29	4.14	4.43	4.14	4.14	2.57	2.43	3.14	2.86	2.86	3.29	3.43	2.14	2.86	2.43	3.00	2.14	2.29
		B	-	•	-	2		-	-	2	2	2	2	4	7	4	7	7	7	2	2	7	7	4	7	-	7	7	7	2	7	7	7	~	7	-
		se	ទ	Þ	13	51	11	8	8	11	2	8	35	20	Ŧ	21	8	53	13	8	8	Ŧ	49	8	21	46	21	51	46	8	Ŧ	28	28	20	.76	10
		Science	lean	Þ	3	7 1	4 1	4	1	4 1	6	6	4 1	6	-	4 1	4 0	3	3	0	9	-	-	4 0	6 1	4 1	6 1	1	4 1	1	6	0	0 0	6	6 0	4
Test		Natural	-	Þ	2.4	2.5	3.1	<u></u>	3.2	31	3.2	3.2	31	3.2	2.7	31	21	1.4	2.4	4.0	4.8	3.7	4.7	1	2.8	<u></u>	2.8	2.5	<u></u>	4.0	3.2	2.0	2.0	32	1.2	2
mples		_	-	Þ	2	7	7	~	~	~	2	2	7	7	2	7	2	7	7	2	~	7	2	7	7	~	7	2	2	~	2	7	7	~	7	2
lent Sa	tatistic	erical	8		1.74	1.60	1.46	1.39	1.55	1.66	1.37	1.32	1.30	1.33	1.43	0.99	1.41	0.72	1.42	1.39	1.18	1.17	1.47	1.12	1.42	1.46	1.58	1.28	1.58	1.66	1.22	0.90	1.33	1.55	0.73	1.48
epenc	iptive S	hs/Num	Mean		3.53	2.94	3.47	2.94	3.53	3.35	3.65	3.35	3.76	3.82	2.94	3.71	2.88	1.47	2.18	4.06	4.41	4.35	4.18	1.53	3.41	3.35	3.12	3.53	3.59	3.53	2.88	1.76	2.18	2.53	1.18	2.24
르	Descr	Mat	-	•	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	11	1	1	1	1	1	1	1	11	5	11	1
		alth	ទ	Þ	12	71	11	1	8	12	8	1	11	8	8	11	4	. 11	4		1	41	8	. 11	. 11	12	. 11	4	1	8	12	. 11	. 00	8	71	1
		and He	eau	Þ	0	0	0	0	0	0	0	0	0	0	0	0		0	1	0	0	1	0	0	0	0	0		0	0	0	0	0	0	0	0
		dicine	2	Þ	1.5	1.5	1.5	1.5	2.0	1.5	2.0	1.5	1.5	2.0	2.0	1.5	2.0	2.5	4.0	1.5	4.5	2.0	5.0	1.5	1.5	1.5	1.5	2.0	3.5	3.0	2.5	2.5	3.0	;	1.5	1.5
		Ř	6	Þ	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		Ē	8		1.46	1.52	1.39	1.48	1.49	1.40	1.33	1.36	1.67	1.57	1.21	1.20	0.96	0.87	1.57	0.89	1.02	1.41	0.75	1.02	1.45	1.47	1.41	1.34	1.59	1.53	1.56	1.30	1.15	1.71	1.63	1.20
		ngineer	Mean	•	3.56	2.81	3.25	3.25	3.31	3.69	3.19	3.12	3.12	3.06	2.56	3.63	2.38	1.31	2.75	4.44	4.63	4.00	4.81	1.38	2.88	2.81	2.56	2.75	3.50	3.75	3.19	2.31	2.12	3.13	2.12	2.12
			-	Þ	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
		mal	5	F	2.83	2.12	0	0.71	0.71	0.71	0.71	0.71	0.71	0.71	Ö	0.71	0.71	0	2.12	1.41	0	0	Ö	2.83	1.41	2.12	0	0.71	0.71	2.12	0	0	0.71	2.12	2.83	Ö
		ral, Ani	ean	Þ	e	2.5	4	4.5	4.5	3.5	2.5	2.5	3.5	2.5	2	3.5	1.5	-	2.5	4	9	9	5	3	2	2.5	-	1.5	1.5	3.5	5	2	1.5	2.5	3	-
		gricultu	2	F	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	┝	A	4	Þ	al va	al va	al va	al va	al vi	ev la	al va	ev la	el va	al va	ev la	el va	al va	al va	al va	al vi	al vi	al va	al vi	al vi	al va	al va	al vi	al vi	ev la	ev la	al va	al va	al vi	al va	al vi	EN IR
	riances		Bes	Þ	Ш	Equi	Equi	B	Ē	Ē	ШË	В	Ē	Ë	Ē	Equi	Ë	Equi	Ш	B	B	Equi	B	Equi	Equi	Ш	Equi	Ē	Ē	Ш	Ë	Equi	Equi	Ë	Equi	B
	ty of Va	Nean)	ŝ		90.0	0.43	0.07	0.31	0.04	0.10	0.17	0.55	0.19	0.17	90.0	0.28	0.23	0.06	0.46	0.0	0.0	0.07	0.0	0.00	0.38	0.57	0.04	0.04	0.32	0.09	0.20	0.10	0.01	0.27	0.00	0. 1
	ogenei	sed on 1	2JP		28	58	28	28	28	22	88	88	89	89	32	89	88	28	88	88	88	89	88	88	88	88	28	28	88	88	88	88	28	88	58	33
	of Hom	(bas	Ŧ	Þ	5	2	2			5	s.	2	5		5	5	5	S	5	<u>ہ</u>	~	5	5	<u>ج</u>	S	5	5	5	5	5	5	5	5	5	5	5
	Tests		evene	tati:	13	10	10	22	41	8	59	8	52	15	-	28	41	12	96	62	98	10	15	12	60	8	43	36	21	33	49	6	80	3	56	88
			Sta L	s ►	B1 (2	B2 F1	B3 V2	B411	B5 E2	B6 11	CD1	CD20	CD31	CD41	CD52	CD61	E111	E212	E3 F0	F113	F2F4	F3 V2	F417.	F514.	G111	G2 10	G3 72	G4 12	G5 11	G6 11	G7 11	H1 (1	H2 I 3.	H3 1	H4 / 8.	H5 M1

CES	
Ĩ	
EN	
P	

South America – Overall comparisons

No statistically significant results. The sample sizes are too small.

Krus	a.	Wall	Asyn	- <u>:</u> ,	0.5	0.5	0.4	6.0	6.0	0.6	0.4	0.3	0.8	0.7	0.7	0.6	0.2	00	0.1	0.3	0.5(0.61	0.49	0.8	0.3	0.4	0.5	0.4	0.4(0.79	0.9	0.7	0.7	0.2(0.7	0.4
	quality		Sig.	•															0.19					0.62			0.63									
	est of E	ns)**	đ	Þ															10.93					10.42			10.74									
	lobust T	of Mea	뷴	Þ															4					4			4									
	Velch (F		itatisti	Þ															1.88					0.68			0.66									
	-		Sig.	Þ	.55	.55	53	.97	<u>8</u>	17	.53	.35	.81	.81	69	.63	60'			.60	.64	.74	.65		.37	.50		.46	.42	.80	.96	.78	.64	.15	99'	8
			ш	Þ	11	82.	<u>18</u>	14	19	54 0	.81 (.15 (40 0	40	12	65 (16 0			69 (0	63	50	.62 (10	86 0		.93 (0	66	41 0	.15 (44 0	63 (80 0	.61 (8
	IOVA**		Aean	, ₹	.91	.55	.72 0	35 0	8	.15	.62 0	31 1	79 0	99	36	.12 0	.89			.27 0	90	66	00		11 1	.88		.72 0	25 0	.04	.33 [0	.56 0	.78 0	13 1	90 0	36
	A		4		-					-	-	2	0		0	-	-			1	_		-		2	1		-	2	-	0	0	0	3	0	
			SS	Þ	.64	18	90 4	39 4	.52	.61 4	3.46 4	.24 4	3.16 4	.62 4	80 4	49 4	57 4			0.08 4	.25 4	97 4	99 4		3.46 4	.51 4		.90 4	.01 4	16 4	.33 4	23 4	3.14 4	2.52 4	3.61 4	.43
		s,	S	Þ	99	8	48	55 1	1	38	30	32	8	06	4	33 4	98	81	85	11	11	ت	4	52	34	38 7	44	36 6	е е	66 4	50 1	15 2	95	27 1	12	98
		Science	ean	Þ	2 1.	9	7 1.	1	9	8	7 1.	8	0 1.	5 0.	5	2 1.	8 0.	0	9 0.	91.	9	4	9 1.	5	5 1.	1 1.	8 1.	7 1.	2 1.	2 1.	2 1.	0 1.	8 0.	4 1.	2 1.	<u> </u>
		Social	W	•	2.9	2.6	2.7	3.3	3.4	3.0	2.7	3.0	3.0	3.1	2.8	3.6	2.0	1.4	1.6	4.6	4.6	4.5	4.6	1.8	2.8	3.3	3.0	2.7	3.6	2.9	2.9	2.0	2.0	2.5	1.9	2.0
			-	Þ	1	1	1	3	с	33	13	13	13	13	3	13	13	с	13	13	13	с	13	33	13	13	13	13	13	13	13	13	13	13	13	с
		and	S		1.41	1.29	1.50	0.96	0.58	1.71	1.29	1.41	1.73	1.50	1.29	0.82	0.58	0.0	0.50	0.96	1.00	1.89	1.00	1.00	1.41	1.89	1.41	1.26	1.41	2.06	1.71	0.50	0.82	0.50	0.82	0.50
		er Tech	Mean	•	2.00	2.50	3.25	3.25	3.50	2.75	2.50	2.00	3.50	2.75	2.50	4.00	1.50	1.00	1.75	4.25	4.50	3.75	4.50	1.50	2.00	2.25	2.00	2.25	2.00	3.25	3.25	2.25	2.00	1.75	2.00	2.25
		돌	=	Þ																																
		s	S	Þ	6 4	9	1	6 4	0	0	9 4	9 4	3 4	6 4	6 4	1 4	0 4	9 4	1 4	1 4	0	0	0 4	6 4	1 4	9 4	3 4	0 4	1 4	0 4	1 4	1 4	1 4	3 4	3 4	3
		Science	an	Þ	12	,	1.4	2.0	4	2.0	1	1.2	10	1	12	1.1	41	~	1.1	1.4	2.0	50	1.5	2.0	1.5	1.8	1.7	1.5	1.5	1.5	1.1	1.1	1.4	1.0	1.1	1
est		atural	Me	Þ	3.75	3.75	4.00	2.75	3.75	4.00	3.75	3.50	3.00	3.25	3.25	2.75	3.25	2.25	2.75	4.00	4.00	4.00	4.25	2.75	3.50	3.75	3.50	3.75	3.50	3.75	2.75	2.75	3.00	3.00	2.50	2.50
ples 1		Z	-		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
nt San	atistics	rical	S		1.41	1.12	1.32	1.58	1.45	1.17	1.17	1.58	1.66	1.54	1.50	1.27	1.00	1.32	1.59	1.56	1.36	1.32	1.13	1.76	1.20	1.24	0.71	1.12	1.54	1.54	1.56	1.13	0.87	1.20	0.73	1.05
pende	otive St	s/Nume	Mean	Þ	3.33	3.00	3.67	3.33	3.11	2.89	3.11	3.00	3.00	3.11	2.67	3.11	2.00	5.00	2.56	3.78	3.89	0.4	4.44	2.11	2.22	2.56	2.67	2.33	3.11	2.89	2.78	2.44	2.33	2.22	1.56	2.11
Inde	Descri	Math	-	►																																
		alth	S	Þ	5	5	5	6	5	6	6	6	6	6	6	6	6	5	6	9	5	5	6	6	6	6	6	6	5	6	6	6	9	9	6	5
		and He	ean	Þ								_																							_	
		edicine	ž	Þ								_																								
		Ň	-	Þ	0	0	0	-	0	0	0	0	0	0	0	0	0	-	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-
		bu	S		1.70	1.51	1.53	1.56	1.29	1.50	1.57	1.44	1.38	1.38	1.30	1.31	0.83	0.29	0.49	1.51	1.27	1.40	1.51	0.67	1.38	1.48	1.56	1.51	1.57	1.45	1.27	1.03	1.38	1.44	1.48	1.31
		ngineer	Mean	•	2.83	2.42	3.17	3.42	3.25	3.33	3.50	3.67	3.58	3.58	3.33	3.42	1.83	1.08	1.33	4.08	4.17	3.83	3.92	1.42	3.08	3.00	3.08	2.92	3.50	3.50	3.17	2.17	2.42	3.42	2.25	2.92
		ш	-	Þ	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		nal**	S	Þ	-	-	-	-	-	-	-	-	-	-	-	+	-	-	1	1	-	-	-	-	-	1	-	1	-	1	1	-	1	1	-	-
		al, Anin	ean	Þ								_																								
		ricultur	ž	Þ	-	-	-	-	-	-	-	+	+	-	-	+	-	-	1	1	-	-	-	-	-	1	+	+	-	+	1	-	1	1	1	-
		Ag	-	Þ	Ŋ	ВV	ev.	RV	EV.	РЛ	РЛ	ИЗ	Va	Ŋ	РЛ	Ŋ	ВV	Ň	Vi	Va	Va	EV.	Ŋ	Ņ	Ŋ	Na	Ŋ	Va	Ŋ	Ŋ	Na	Va	va	Va	ИЗ	EV.
	ances		Resu		Equal	Equal	Equal	Equal	Equal	Equal	Equal	Equal	Equal	Equal	Equal	Equal	Equal	Equa	Equa	Equal	Equal	Equal	Equal	Equa	Equal	Equal	Equa	Equal	Equal	Equal	Equal	Equal	Equal	Equal	Equal	Equal
	of Vari	ean)	Sig.		0.36	0.72	0.61	0.14	0.10	0.67	0.50	0.88	0.35	0.32	0.81	99'0	0.26	0.00	0.00	0.16	0.09	0.28	0.23	0.01	0.52	0.85	0.02	0.63	0.66	0.59	0.87	0.45	0.24	0.21	0.08	0.12
	geneity	d on M	Ç	Þ	1	1	1	1	1	1	4	1	18	1	1	4	1	1	1	1	2	1	4	1	1	1	1	1	1	1	1	18	1	18	1	1
	Homo	(base	đđ	Þ	<u> </u>			-	~	~				~			~	~	3	3	~	<u> </u>		-		3	3	3	~		3	3	3	3	3	<u> </u>
	Tests of		ene	ţ]eti ▼	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	_		at Lev	Star C	G 1.13	F 60.52	N0.68	1 It 1.86	5 B 2.11	W0.59	11 10.86	12 0.30	33 11.14	11.22	35 10.40	10.61	111.39	It 5.09	It 4.84	In 1.77	PI2.16	W1.33	In 1.46	113.76	1 W0.82	2 W0.34	3 T 3.33	1 D 0.65	5 M0.61	5 M 0.72	⁷ F 0.32	00.95	1 144	3111.56	M 2.24	5 M 1.99
			ŝ	e -	1 in		Ш		ГĞ	B	1U	5	J	5	1U	U U	μ		Ш	Ш	E.	122	12	ĽС	(D	5	ق	Ö	G	5	5	Ξ	Ξ	Ξ	Ŧ	ΙΞ

CES	
H	
Θ	
Z	
Щ	
P-	
д	

												Inde	penden	t Sample	s Test															Nrusk
Tests	of Homoger	neity of Vari	ances									Descrip	tive Stat	istics										ANO	M		Welch (Ro	bust Test	of Equality	al-
	(based c	on Mean)		Agricult	ural, Anin	nal	Engineer	ing	Medi	cine and	Health	Maths	Numeri	cal	Natura	Sciences		Other Te	ch and	S	ocial Scien	ces,						of Means)		Walli
Stat Levene	df d	f2 Sig.	Result	-	Mean	SD n	Mean	SD	=	Mean	SD	=	Mean	SD	۲ ۲	lean S	-	, Meå	n SD	=	Mean	SD	SS	df Meå	ц.	Sig.	Statisti	ŧ	Sig.	Asym
emo Statieti n c *	Þ	Þ	•	Þ	Þ	►	P		•	•	•	Þ	F	Þ	Þ.	Þ	Þ	►	•	•	•	•	Þ	Sq!	*	Þ	F	Þ	•	- <mark>:</mark>
B1 Gi 3.64	55	0.00	Equal va	2	2.5	0.71 18	1.39	0.61	24	1.75	0.90	3	33	58 11	1.5	30 0.46	~	1.33	0.58	2	2.50	2.12					0.93	6 5.4	69 0.54	0.34
B2 Fe 1.64	55 55	0.15	Equal va	2	3	1.41 18	1.83	0.99	24	1.92	0.83	3	33 0	58 10	1.1	70 0.82	~	3.00	1.73	2	2.00	0.00	7.50 6	1.25	1.46	0.21				0.45
B3 W 1.73	55	0.13	Equal va	2	e	1.41 18	2.06	0.94	24	2.17	0.87	3 2	33	53 1(1.9	30 1.25	~	2.67	2.08	2	3.00	1.41	4.54 6	0.76	0.64	0.69				0.74
B4 It 0.60	55	0.73	Equal va	2	2	1.41 18	1.89	0.90	24	2.50	1.06	3 2	33 1	53 1(1.6	0.97	~	3.33	1.15	2	3.00	1.41	12.76 6	2.13	1.97	0.09				0.10
B5 Bc1.39	555	0.24	Equal va	2	2	0 18	2.00	1.08	24	2.42	1.14	3	33	15 10	1.5	90 1.45	~	3.00	1.73	2	3.50	2.12	7.97 6	1.33	0.89	0.51				0.49
B6 W 1.85	55 55	0.11	Equal va	2	3	1.41 18	2.28	1.23	24	2.04	0.86	3 2	1	00 11	1.5	30 1.20	~	2.67	2.08	2	4.00	1.41	10.14 6	1.69	1.33	0.26				0.46
CD1 \3.92	55	0.00	Equal va	2	2.5	0.71 18	2.17	1.15	24	2.04	0.81	3	.67 1	.15 1(2.2	20 1.62	~	2.33	2.31	2	2.50	0.71					0.20	6 5.5	89 0.96	0.92
CD2 \4.41	55	0.00	Equal va	2	2.5	0.71 18	1.89	1.23	24	2.08	0.72	3	.67 0	58 10	1 2.5	50 1.66	~	2.33	2.31	2	2.50	0.71					0.42	6 5.	63 0.84	0.72
CD3 \2.82	55	0.02	Equal va	2	~	1.41 18	2.17	1.42	24	2.50	0.78	3	.33	58 10	2.5	30 1.45	د	2.67	2.08	2	2.50	0.71					1.14	6 5.5	76 0.45	0.46
CD4 V1.63	55	0.16	Equal va	2	~	1.41 18	2.33	1.37	24	2.54	88.0		33	58 1(22	20 1.46	~	2.67	2.08	2	2.50	0.71	5.32 6	0.89	0.61	0.72				0.48
CD5 \4.13	55	0.00	Equal va	2	2.5	0.71 18	1.89	1.23	24	2.04	0.75	3	33 0	58 10	2.5	50 1.66	3	2.33	2.31	2	1.50	0.71					0.74	6 5.6	62 0.64	0.64
CD6 11.61	3 55	0.16	Equal va	2	3.5	0.71 18	2.61	1.33	24	3.04	1.08	3	33 2	08 10	3.3	30 1.25	~	2.33	1.53	2	4.00	0.00	7.81 6	1.30	0.84	0.54				0.48
E11b0.47	55 55	0.83	Equal va	2	2	1.41 18	1.61	0.70	24	2.04	0.86	3	33 0	58 10	1.5	50 0.97	3	3.00	1.00	2	3.00	1.41	10.56 6	1.76	2.40	0.04				0.06
E2 It 3.48	55 55	0.01	Equal va	2	-	0 18	1.50	0.71	24	1.67	0.64	3	33 0	58 11	1.1	10 0.32	3	3.00	1.00	2	1.50	0.71								0.02
E3 It [3.31	55 55	0.01	Equal va	2	1.5	0.71 18	2.50	1.20	24	2.50	1.18	3	33 0	58 10	1.1	10 0.32	3	2.33	0.58	2	1.50	0.71					5.43	6 5.5	46 0.03	0.01
F1 In 1.67	3 55	0.14	Equal va	2	3.5	2.12 18	3.06	1.35	24	3.75	1.26	3 4	00	.00 1(2.7	70 1.83	3	3.33	1.15	2	4.50	0.71	13.50 6	2.25	1.15	0.34				0.43
F2 Pr 2.46	55 55	0.04	Equal va	2	9	0 18	3.72	1.18	24	4.17	1.13	3 4	00	.00 10	3.1	10 1.60	3	2.67	2.08	2	5.00	0.00								0.14
F3 W 1.01	3 55	0.43	Equal va	2	4.5	0.71 18	3.28	1.49	24	3.96	1.20	3 4	33 1	.15 10	3.6	0 1.70	3	3.00	2.00	2	3.50	2.12	12.86 6	2.14	1.05	0.40				0.49
F4 In 5.44 (55 55	0.00	Equal va	2	9	0 18	4.17	1.15	24	4.54	0.72	3 4	33 1	.15 10	3.6	50 1.71	3	3.33	2.08	2	5.00	0.00								0.46
F51b111	3 55	0.37	Equal va	2	1.5	0.71 18	1.50	0.92	24	2.00	0.98	3	.67 1	.15 10	1.5	90 1.66	3	2.67	1.53	2	1.50	0.71	5.32 6	0.89	0.70	0.65				0.48
G1 W 3.98	55 55	0.00	Equal va	2	2.5	0.71 18	2.06	1.06	24	1.83	0.92	3	00	00 10	1.6	30 1.32	3	2.33	2.31	2	2.50	2.12								0.55
G2 W 5.14	55	0.00	Equal va	2	2	0 18	2.06	1.11	24	1.54	0.72	3	.33	58 10	1.8	30 1.03	~	2.33	2.31	2	3.00	2.83								0.71
G3 TI 3.59	55 55	0.00	Equal va	2	2.5	0.71 18	1.61	0.78	24	1.38	0.65	3	00	00 10	1.6	50 1.07	3	2.00	1.73	2	1.50	0.71								0.39
G4 D(1.63	565	0.16	Equal va	2	2.5	0.71 18	1.78	1.06	24	1.54	0.72	-	.33	58 10	1.6	0.97	~	2.00	1.73	2	2.00	1.41	2.91 6	0.49	0.55	0.77				0.78
G5 W 2.63	55 55	0.03	Equal va	2	2.5	0.71 18	1.94	1.06	24	1.62	0.97	3	.67 1	.15 11	1.1	70 1.25	3	2.33	2.31	2	3.00	2.83					0.38	6 5.4	61 0.86	0.70
G6 M 2.37	55 55	0.04	Equal va	2	2	0 18	2.72	1.18	24	2.33	1.40	3 2	33 2	31 10	2.2	20 1.55	3	2.33	2.31	2	3.50	2.12								0.81
G7 Fe0.22	3 55	0.97	Equal va	2	3	1.41 18	3.50	1.25	24	3.42	1.25	3 4	00	.00 11	2.5	50 1.35	3	3.33	1.15	2	3.00	1.41	9.27 6	1.55	0.97	0.45				0.49
H1 0 1.77	3 55	0.12	Equal va	2	2	0 18	1.72	0.67	24	2.04	0.81	3 2	00	.00	1.6	50 0.84	3	2.33	1.53	2	3.00	1.41	4.96 6	0.83	1.21	0.32		_		0.49
H21a1.88	999 92	0.10	Equal va	2	2.5	0.71 18	2.06	11	24	2.50	1.02	3	0	1	1.5	90 0.85	~	1.67	1.15	2	2.50	0.71	6.36 6	1.06	1.05	0.40				0.37
H31F0.33	999	0.92	Equal va	2	~	1.41 18	183	0.99	24	2.00	1.02	3 2	9	100	1.6	50 1:07	~	2.33	1.53	2	2.50	0.71	4.79 6	0.80	0.73	0.63		_		0.55
H4 M 3.54 (55	0.00	Equal va	2	1.5	0.71 18	1.44	0.51	24	1.71	0.86		0	1	1.5	50 0.97	~	1.00	0.0	2	1.00	0.00								0.34
H5 M 5.72	55 55	0.00	Equal va	2	1.5	0.71 18	1.50	0.62	24	1.54	99.0	-	8	100	=	70 1.25	~	2.00	1.73	2	1.00	0.0						-		0.75
B-3. Global - Multiple comparisons

Only STEM Clusters with differences are shown here, i.e. where there are no significant differences between Clusters, these have been filtered out of this view for conciseness.

The first Letter code indicates the highest value mean: the following letter codes are in alphabetical order only. For example, in row 33, Medicine and Health (Letter code c) has the highest mean value for responses for CD1, Engineering (code b), Maths/Numerical (code d) and Social Sciences (code g) have lower mean values of 2.20, 2.00 and 2.20 respectively.

Independent	Samples Test: Multiple Comparisons	Mean	is differ	ent fron	n	
Statements	STEM Cluster		L	etter C	ode	
B2	Natural Sciences (4-8)	e	d			
B3	Engineering (9-15)	b	d			
B3	Medicine and Health (21-25)	с	d			
B3	Natural Sciences (4-8)	e	d			
B6	Engineering (9-15)	b	d			
B6	Medicine and Health (21-25)	с	d			
B6	Natural Sciences (4-8)	e	d			
B6	Other Tech and Architectural (16-20)	f	d			
CD1	Medicine and Health (21-25)	с	b	d	g	
CD1	Natural Sciences (4-8)	e	b	d	g	
CD2	Medicine and Health (21-25)	с	b	d		
CD2	Natural Sciences (4-8)	e	d			
CD3	Agricultural, Animal (26-29)	a	d			
CD3	Medicine and Health (21-25)	с	b	d	g	
CD3	Natural Sciences (4-8)	e	b	d		
CD3	Other Tech and Architectural (16-20)	f	d			
CD4	Medicine and Health (21-25)	с	b	d		
CD4	Natural Sciences (4-8)	e	d			
CD4	Other Tech and Architectural (16-20)	f	d			
CD5	Natural Sciences (4-8)	e	b	d		
CD6	Medicine and Health (21-25)	с	b	d	g	
CD6	Natural Sciences (4-8)	e	b	d		
E1	Medicine and Health (21-25)	с	а	b	d	g
E1	Natural Sciences (4-8)	e	а	b	d	g
E2	Medicine and Health (21-25)	с	а			
E2	Maths/ Numerical Sciences (1-3)	d	а	g		
E3	Engineering (9-15)	b	g			
E3	Maths/ Numerical Sciences (1-3)	d	a	e	g	
E3	Natural Sciences (4-8)	e	g			
E3	Other Tech and Architectural (16-20)	f	g			
F1	Medicine and Health (21-25)	с	d	g		
F1	Natural Sciences (4-8)	e	d	g		
F2	Engineering (9-15)	b	g			
F2	Medicine and Health (21-25)	с	d	g		
F2	Natural Sciences (4-8)	e	d	g		
F4	Engineering (9-15)	b	g			

To see the value of the means, refer back to the Overall Comparisons analysis data.

F4	Medicine and Health (21-25)	c	a	g		
F4	Natural Sciences (4-8)	e	a	g		
G1	Medicine and Health (21-25)	c	d			
G1	Natural Sciences (4-8)	e	b	d		
G2	Medicine and Health (21-25)	c	d			
G2	Natural Sciences (4-8)	e	b	d	g	
G2	Other Tech and Architectural (16-20)	f	d			
G3	Natural Sciences (4-8)	e	d			
G5	Natural Sciences (4-8)	e	d			
G6	Engineering (9-15)	b	g			
G6	Medicine and Health (21-25)	c	d	g		
G6	Natural Sciences (4-8)	e	b	d	g	
H1	Natural Sciences (4-8)	e	d			
H3	Engineering (9-15)	b	d			
H3	Medicine and Health (21-25)	c	b	d		
H3	Natural Sciences (4-8)	e	d			

South Korea – Multiple comparisons

We note here only three STEM Clusters differing significantly in responses to only one statement.

Independent	t Samples Test: Multiple Comparisons (Alpha=0.	05)		
Statements	STEM Cluster	Letter Code	Mean	Mean is different from
F3	Agricultural, Animal (26-29)	а	2.00	
F3	Engineering (9-15)	b	3.40	
F3	Medicine and Health (21-25)	с	3.90	
F3	Maths/ Numerical Sciences (1-3)	d	2.89	
F3	Natural Sciences (4-8)	e	3.81	
F3	Other Tech and Architectural (16-20)	f	3.14	
F3	Social Sciences, Psychology, Economics (30-32)	g	3.63	
G6	Agricultural, Animal (26-29)	а	5.00	
G6	Engineering (9-15)	b	4.31	d
G6	Medicine and Health (21-25)	c	4.48	d
G6	Maths/ Numerical Sciences (1-3)	d	3.42	
G6	Natural Sciences (4-8)	e	3.93	
G6	Other Tech and Architectural (16-20)	f	4.57	
G6	Social Sciences, Psychology, Economics (30-32)	g	4.13	

Africa – Multiple comparisons

We note here only two STEM Clusters differing significantly in responses to only one statement.

Independent	t Samples Test: Multiple Comparisons (Alpha=0.	05)		
Statements	STEM Cluster	Letter Code	Mean	Mean is different from
CD3	Agricultural, Animal (26-29)	а	2.82	
CD3	Engineering (9-15)	b	2.77	
CD3	Medicine and Health (21-25)	с	2.78	
CD3	Maths/ Numerical Sciences (1-3)	d	2.49	
CD3	Natural Sciences (4-8)	e	2.64	
CD3	Other Tech and Architectural (16-20)	f	2.89	
CD3	Social Sciences, Psychology, Economics (30-32)	g	2.23	
E1	Agricultural, Animal (26-29)	а	1.42	
E1	Engineering (9-15)	b	1.40	
E1	Medicine and Health (21-25)	с	1.50	
E1	Maths/ Numerical Sciences (1-3)	d	1.43	
E1	Natural Sciences (4-8)	e	1.25	
E1	Other Tech and Architectural (16-20)	f	1.11	
E1	Social Sciences, Psychology, Economics (30-32)	g	1.30	
E2	Agricultural, Animal (26-29)	а	1.13	
E2	Engineering (9-15)	b	1.18	
E2	Medicine and Health (21-25)	с	1.48	
E2	Maths/ Numerical Sciences (1-3)	d	1.40	
E2	Natural Sciences (4-8)	е	1.20	
E2	Other Tech and Architectural (16-20)	f	1.39	
E2	Social Sciences, Psychology, Economics (30-32)	g	1.15	
G6	Agricultural, Animal (26-29)	а	2.29	
G6	Engineering (9-15)	b	2.54	
G6	Medicine and Health (21-25)	с	2.52	
G6	Maths/ Numerical Sciences (1-3)	d	2.34	
G6	Natural Sciences (4-8)	e	3.05	g
G6	Other Tech and Architectural (16-20)	f	2.00	
G6	Social Sciences, Psychology, Economics (30-32)	g	1.98	

India - Multiple comparisons

Independent	t Samples Test: Multiple Comparisons (Alpha=0.0)5)				
Statements	STEM Cluster	Letter Code	Mean	Mean from	is differ 	rent
B2	Medicine and Health (21-25)	c	2.53	b		
B6	Medicine and Health (21-25)	c	2.83	b	d	e
CD1	Natural Sciences (4-8)	e	2.18	b		
CD3	Medicine and Health (21-25)	c	2.77	b	d	
CD6	Social Sciences, Psychology, Economics (30-32)	g	2.91	b	d	
F2	Medicine and Health (21-25)	c	4.17	e		
G1	Medicine and Health (21-25)	c	2.20	b		
G1	Natural Sciences (4-8)	e	2.19	b	d	
G2	Medicine and Health (21-25)	c	2.23	b		

G2	Natural Sciences (4-8)	e	2.25	b	d	
G3	Medicine and Health (21-25)	c	2.30	b		
G3	Natural Sciences (4-8)	e	2.11	b		
G4	Medicine and Health (21-25)	c	2.43	b		
G4	Maths/ Numerical Sciences (1-3)	d	2.03	b		
G4	Natural Sciences (4-8)	e	2.25	b		
G5	Natural Sciences (4-8)	e	2.36	b		
G6	Medicine and Health (21-25)	c	3.27	b		

Taiwan – Multiple Comparisons

We note here only one statement where several Clusters respond differently.

Independent	t Samples Test: Multiple Comparisons (Alpha=0.0	05)						
Statements	STEM Cluster	Letter Code	Mean	Me fro	an is m	s diff	erent	
E1	Agricultural, Animal (26-29)	а	2.00					
E1	Engineering (9-15)	b	1.61					
E1	Medicine and Health (21-25)	с	2.04					
E1	Maths/ Numerical Sciences (1-3)	d	1.33					
E1	Natural Sciences (4-8)	e	1.50					
E1	Other Tech and Architectural (16-20)	f	3.00					
E1	Social Sciences, Psychology, Economics (30-32)	g	3.00					
E2	Agricultural, Animal (26-29)	а	1.00					
E2	Engineering (9-15)	b	1.50					
E2	Medicine and Health (21-25)	с	1.67					
E2	Maths/ Numerical Sciences (1-3)	d	1.33					
E2	Natural Sciences (4-8)	e	1.10					
E2	Other Tech and Architectural (16-20)	f	3.00	a	b	c	d	e
E2	Social Sciences, Psychology, Economics (30-32)	g	1.50					
E3	Agricultural, Animal (26-29)	а	1.50					
E3	Engineering (9-15)	b	2.50					
E3	Medicine and Health (21-25)	с	2.50					
E3	Maths/ Numerical Sciences (1-3)	d	1.33					
E3	Natural Sciences (4-8)	e	1.10					
E3	Other Tech and Architectural (16-20)	f	2.33					
E3	Social Sciences, Psychology, Economics (30-32)	g	1.50					

NB "Missing" Multiple STEM Comparisons

As STEM Cluster Overall comparisons for Europe, South America and Japan did not reveal any significant differences, no Multiple Comparison tables were generated for these regions.

B-4. By STEM X Gender

The following do not include the late responses.

Agriculture - women vs men global comparison

					Indepe	ndent Samp	les Test: T	Tests								
	Lever	ne's Test fo	r Equality of Variances		Desci	iptive Statist	ics				t-test fo	or Equality of	Means			Mann- Whitnev U
Statements	u	Sig.	Result	Female/non-	Female/non-	Male - n	Aale - Mean	Male - SD	•	đ	Significance	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
Ţ	Þ	•		binary - Mean	binary - SD	•	•	Þ	•	+	- Two-Sided	Difference	Difference	Difference -	Difference - Upper 🔻	(2-tailed)
B1 Girls and boys are e	21.76	0.0	Equal variances not assumed	2.29	1.27	19	1.21	0.42	4.91	54.33	0.00	1.08	0.22	0.64	1.52	<.001
B2 Female students in \$	9.98	0.0	Equal variances not assumed	2.29	1.25	19	1.47	0.70	3.25	55.84	00.0	0.82	0.25	0.31	1.32	0.02
B3 Women in STEM red	12.06	0.0	Equal variances not assumed	2.46	1.27	19	1.47	0.70	3.89	56.12	0.0	0.99	0.25	0.48	1.50	0.00
B4 It is equally difficult f	0.35	0.56	Equal variances assumed	2.27	1.10	19	2.00	1.11	0.88	58.00	0.38	0.27	0.30	-0.34	0.88	0.29
B5 Being promoted or t	1.22	0.27	Figual variances assumed	2.37	1.16	19	1.84	1.01	1.69	58.00	0.10	0.52	0.31	-0.10	1.14	0.07
B6 Women in STEM gei	16.91	0.0	Equal variances not assumed	2.56	1.30	19	1.32	0.58	5.11	57.97	0.00	1.25	0.24	0.76	1.73	<,001
CD1 Women in STEM b	3.18	0.08	Equal variances assumed	2.68	1.25	19	1.63	0.00	3.28	58.00	0.00	1.05	0.32	0.41	1.69	0.00
CD2 Women in STEM b	1.94	0.17	Fqual variances assumed	2.63	1.34	19	1.89	1.24	2.04	58.00	0.05	0.74	0.36	0.01	1.47	0.03
CD3 Women in STEM b	2.65	0.11	Equal variances assumed	3.02	1.39	19	2.37	1.16	1.79	58.00	0.08	0.66	0.37	-0.08	1.39	0.09
CD4 Women in STEM b	1.61	0.21	Equal variances assumed	2.68	1.29	19	2.21	1.18	1.35	58.00	0.18	0.47	0.35	-0.23	1.17	0.16
CD5 Women in STEM b	4.56	0.04	Equal variances not assumed	2.27	1.27	19	1.58	0.77	2.60	53.58	0.01	0.69	0.26	0.16	1.22	0.04
CD6 Women in STEM b	4.40	0.04	Equal variances not assumed	3.07	1.47	19	2.37	1.12	2.05	45.46	0.05	0.70	0.34	0.01	1.40	0.08
E1 I believe things will to	2.76	0.10	Equal variances assumed	1.68	0.82	19	1.32	0.48	1.81	58.00	0.08	0.37	0.20	-0.04	0.77	0.08
E2 It is crucial to have s	5.73	0.02	2 Equal variances not assumed	1.29	0.68	19	1.11	0.32	1.46	57.99	0.15	0.19	0.13	-0.07	0.44	0.35
E3 It is appropriate to in	0.08	0.78	B Equal variances assumed	1.83	0.92	19	1.63	0.00	0.78	58.00	0.44	0.20	0.25	-0.31	0.70	0.39
F1 In a relative sense, r	5.99	0.02	Equal variances not assumed	2.95	1.53	19	1.68	1.25	3.39	42.53	0.00	1.27	0.37	0.51	2.02	0.00
F2 Primary breadwinnel	2.29	0.14	Equal variances assumed	3.56	1.43	10	2.63	1.26	2.43	58.00	0.02	0.93	0.38	0.16	1.70	0.02
F3 Women are born to	0.26	0.61	Equal variances assumed	3.29	1.50	19	2.16	1.57	2.68	58.00	0.01	1.13	0.42	0.29	1.98	0.01
F4 In order to maintain	0.00	1.00	Equal variances assumed	3.61	1.45	10	2.21	1.58	3.38	58.00	0.0	1.40	0.41	0.57	2.23	0.0
F5 I believe gender equ	0.40	0.53	8 Equal variances assumed	1.85	1.24	19	1.68	1.25	0.49	58.00	0.62	0.17	0.34	-0.52	0.86	0.61
G1 Women are equally	0.48	0.49	Equal variances assumed	2.20	1.12	19	1.63	0.96	1.89	58.00	0.06	0.56	0:30	-0.03	1.16	0.03
G2 Women equally rece	2.07	0.16	Equal variances assumed	2.12	1.10	19	1.53	0.77	2.13	58.00	0.04	09.0	0.28	0.03	1.16	0.04
G3 The strictness, obje	0.31	0.58	B Equal variances assumed	2.07	1.06	19	1.63	1.01	1.52	58.00	0.13	0.44	0.29	-0.14	1.02	0.08
G4 Dealing with funders	3.13	0.08	B Equal variances assumed	2.20	1.12	19	1.63	0.76	1.98	58.00	0.05	0.56	0.28	-0.01	1.13	0.07
G5 Women receive the	2.36	0.13	B Equal variances assumed	2.41	1.20	19	1.79	0.92	2.01	58.00	0.05	0.63	0.31	0.0	1.25	0.03
G6 Marriage, pregnanc	5.00	0.03	Bequal variances not assumed	3.10	1.43	19	1.58	1.12	4.46	44.04	0.00	1.52	0.34	0.83	2.20	<.001
G7 Female students in	0.75	0.39	Equal variances assumed	3.12	1.23	19	2.32	1.45	2.23	58.00	0.03	0.81	0.36	0.08	1.53	0.02
H1 On balance, my STE	0.13	0.71	Equal variances assumed	1.88	1.00	19	1.84	1.07	0.13	58.00	0:00	0.04	0.28	-0.53	0.61	0.82
H2 I am considered by c	1.23	0.27	7 Equal variances assumed	2.10	0.94	19	1.84	1.17	0.0	58.00	0.37	0.26	0.28	-0.31	0.82	0.15
H3 I have not been pers	0.97	0.33	Equal variances assumed	2.39	1.30	19	1.84	1.26	1.53	58.00	0.13	0.55	0.36	-0.17	1.26	0.11
H4 My family /partner /fi	0.27	0.61	Equal variances assumed	1.73	1.03	19	1.63	1.01	0.35	58.00	0.73	0.10	0.28	-0.47	0.67	0.74
H5 My current colleague	0.25	0.62	Equal variances assumed	1.78	0.99	19	1.84	1.17	-0.21	58.00	0.83	-0.06	0.29	-0.64	0.52	0.99

GISE Report 2022

©2022 INWES & KWSE

Engineering - women vs men global comparison

				-	dependent	Samples Te	est: T-Tests									
	ene's Test for	Equality of Variances			Descriptive	Statistics					t-test f	or Equality of	Means			Mann-
									-							Whitney U
Statements	Sig.	Result	Female/non-F	Female/non-	emale/non-	Male - n	Male - Mean	Male - SD		đ	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
			binary - n	binary -	binary - SD						Two-Sided p	Difference	Difference	Difference -	Difference -	(2-tailed)
•	•	*	•	Mean 🔻	•	4	b	A	*	•	*	•	•	Lower V	Upper 🔻	4
B1 Girls and boys are e	e(0.00	Equal variances not assumed	194	2.62	1.44	333	1.68	1.02	8.01	308.76	0.00	0.94	0.12	0.71	1.17	<,001
B2 Female students in	S 0.00	Equal variances not assumed	194	2.40	1.25	333	1.78	1.08	5.70	356.53	0.00	0.61	0.11	0.40	0.82	<,001
B3 Women in STEM ret	0.00	Equal variances not assumed	194	2.91	1.32	333	1.92	1.17	8.65	364.82	0.0	0.09	0.11	0.76	1.21	<,001
B4 It is equally difficult t	fc 0.88	Equal variances assumed	194	2.78	1.31	333	2.38	1.35	3.33	525.00	0.0	0.40	0.12	0.16	0.64	<,001
B5 Being promoted or t	b) 0.00	Equal variances not assumed	194	2.81	1.35	333	2.13	1.20	5.85	366.25	0.0	0.68	0.12	0.45	0.91	<,001
B6 Women in STEM ge	en 0.00	Equal variances not assumed	194	2.94	1.43	333	1.94	1.13	8.36	334.69	0.0	1.00	0.12	0.76	1.24	<,001
CD1 Women in STEM t	b(0.00	Equal variances not assumed	194	3.01	1.41	333	1.72	1.05	11.07	318.76	0.00	1.29	0.12	1.06	1.52	<,001
CD2 Women in STEM t	b(0.00	Equal variances not assumed	194	2.99	1.43	333	1.74	1.08	10.60	321.34	0.0	1.25	0.12	1.02	1.49	<,001
CD3 Women in STEM t	b(0.00	Equal variances not assumed	194	3.07	1.40	333	2.03	1.11	8.88	334.20	0.0	1.04	0.12	0.81	1.27	<,001
CD4 Women in STEM t	b(0.00	Equal variances not assumed	194	3.11	1.39	333	2.06	1.17	8.90	350.50	0.0	1.05	0.12	0.82	1.29	<,001
CD5 Women in STEM t	b(0.00	Equal variances not assumed	194	2.41	1.38	333	1.73	1.11	5.89	339.12	0.0	0.68	0.12	0.45	0.91	<,001
CD6 Women in STEM t	b(0.13	Equal variances assumed	194	3.24	1.32	333	2.24	1.28	8.61	525.00	0.0	1.01	0.12	0.78	1.23	<.001
E1 I believe things will the	tu 0.00	Equal variances not assumed	194	2.17	1.08	333	1.49	0.81	7.63	321.93	0.0	0.68	0.0	0.51	0.86	<,001
E2 It is crucial to have s	st 0.00	Equal variances not assumed	194	1.41	0.76	333	1.66	0.97	-3.36	479.51	0.0	-0.26	0.08	-0.41	-0.11	0.0
E3 It is appropriate to it	ni 0.00	Equal variances not assumed	194	1.99	1.15	333	2.38	1.39	-3.46	463.69	0.00	-0.39	0.11	-0.61	-0.17	0.00
F1 In a relative sense, i	п 0.02	Equal variances not assumed	194	3.66	1.44	333	2.58	1.30	8.60	372.14	0.00	1.08	0.13	0.83	1.32	<,001
F2 Primary breadwinne	er 0.00	Equal variances not assumed	194	4.30	1.16	333	3.20	1.48	9.49	480.42	0.0	1.10	0.12	0.88	1.33	<,001
F3 Women are born to	t 0.43	Equal variances assumed	194	3.76	1.39	333	2.87	1.44	6.91	525.00	0.0	0.89	0.13	0.64	1.14	<,001
F4 In order to maintain	t 0.00	Equal variances not assumed	194	4.34	1.16	333	3.34	1.55	8.37	492.49	0.00	1.00	0.12	0.76	1.23	<,001
F5 I believe gender equ	u: 0.99	Equal variances assumed	194	1.77	1.10	333	1.80	1.11	-0.37	525.00	0.71	-0.04	0.10	-0.23	0.16	0.61
G1 Women are equally	رز 0:00	Equal variances not assumed	194	2.68	1.29	333	1.63	0.86	10.04	294.00	0.00	1.04	0.10	0.84	1.25	<,001
G2 Women equally rect	e 0.00	Equal variances not assumed	194	2.69	1.31	333	1.61	0.86	10.19	291.02	0.0	1.07	0.11	0.87	1.28	<,001
G3 The strictness, obje	BC 0:00	Equal variances not assumed	194	2.56	1.33	333	1.68	0.91	8.21	300.05	0.00	0.88	0.11	0.67	1.09	<,001
G4 Dealing with funder.	S 0.00	Equal variances not assumed	194	2.64	1.20	333	1.72	0.92	9.20	324.37	0.00	0.92	0.10	0.72	1.11	<,001
G5 Women receive the	0.00	Equal variances not assumed	194	3.00	1.38	333	1.77	0.98	10.97	307.71	0.0	1.23	0.11	1.01	1.46	<,001
G6 Marriage, pregnanc	cy 0.00	Equal variances not assumed	194	3.60	1.49	333	2.38	1.30	9.49	360.10	0.0	1.22	0.13	0.97	1.47	<,001
G7 Female students in	S 0.45	Equal variances assumed	194	3.03	1.34	333	2.76	1.37	2.18	525.00	0.03	0.27	0.12	0.03	0.51	0.03
H1 On balance, my STE	E 0.00	Equal variances not assumed	194	2.22	1.14	333	1.76	0.82	4.98	309.22	0.0	0.46	0.0	0.28	0.65	<,001
H2 I am considered by v	C 0.01	Equal variances not assumed	194	2.25	1.07	333	1.93	0.96	3.39	369.17	0.0	0.32	0.0	0.13	0.50	<.001
H3 I have not been pen	°S 0.00	Equal variances not assumed	194	3.04	1.47	333	1.79	1.04	10.41	307.47	0.0	1.25	0.12	1.01	1.48	<.001
H4 My family /partner /f	fri 0.01	Equal variances not assumed	194	1.61	1.03	333	1.53	0.79	0.99	324.83	0.32	0.08	60.0	-0.08	0.25	1.00
H5 My current colleagu	le 0.36	Equal variances assumed	194	2.03	1.07	333	1.65	0.94	4.24	525.00	0.0	0.38	0.0	0.20	0.56	<.00 001

GISE Report 2022

©2022 INWES & KWSE

$\boldsymbol{\mathcal{O}}$
ГŢ
5
\leq
Ζ.
LT.
$\overline{\mathbf{n}}$

parisor
com
global
men
SN
women
Medicine -

						ndependent	t Samples Te	st: T-Tests									
	Leven	e's Test for	Equality of Variances			Descriptive	Statistics					t-test for	r Equality of N	Means			Mann-
Statements	u	Sig.	Result	Female/non-F	emale/non-F	Female/non-	Male - n	lale - Mean	Male - SD	+	đ	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of	wnitney u Asymp. Sig.
÷	Þ	•		binary - n	binary -	binary - SD		•	•	Þ	Þ	Two-Sided p	Difference	Difference	Difference -	Difference -	(2-tailed)
D1 Cirls and hous are o	7 46	100	Tarianana natarana		Medil 0 00	1 20	VC.	1 70	000	000	440 64	000	U EU	0.40	U 4E	- Jaddn	00
B1 Gills allu DUys alc c B2 Eamala studente in (67 I	0.07	Equal Variatices fiut assumed	100	0.22	07-1	40	1.10	1.02	1 82	112.04	0.07	0.00	0.10	0.10	0.00	
D2 I CITIBIC SUUCIIIS III V	07.0	0.00		421	200	32.1	0+ U	00.0	110	00.0	01.00	0.0	0.00	02.0	0.0	1 05	
B3 Wollien III 31 EW FeU B4 It is equally difficult f	0.16	0.69	Equal variances assumed	122	2.00	1 23	46	2.52	130	12.0-	91.92	0.48	-0.15	0.20	-0.58	76.0	0.49
B5 Being promoted or b	1.06	0.31 E	Equal variances assumed	122	2.20	1.26	46	2.35	1.14	-0.71	166.00	0.48	-0.15	0.21	-0.57	0.27	0.28
B6 Women in STEM gei	3.86	0.05 E	Equal variances assumed	122	2.59	1.22	46	1.87	1.07	3.53	166.00	0.00	0.72	0.20	0.32	1.12	<.001
CD1 Women in STEM b	8.82	0.00	Equal variances not assumed	122	2.83	1.33	46	2.07	1.12	3.72	95.53	0.0	0.76	0.21	0.36	1.17	<001
CD2 Women in STEM b	3.93	0.05 6	Equal variances not assumed	122	2.86	1.33	46	1.83	1.18	4.89	90.85	0.0	1.03	0.21	0.61	1.45	<.001
CD3 Women in STEM b	0.33	0.57 E	Equal variances assumed	122	2.96	1.33	46	2.54	1.39	1.78	166.00	0.08	0.42	0.23	-0.05	0.88	0.06
CD4 Women in STEM b	1.50	0.22 E	Equal variances assumed	122	2.94	1.28	46	2.46	1.44	2.12	166.00	0.04	0.49	0.23	0.03	0.94	0.02
CD5 Women in STEM b	0.44	0.51 6	Equal variances assumed	122	2.27	1.14	46	1.80	1.15	2.35	166.00	0.02	0.47	0.20	0.08	0.86	0.0
CD6 Women in STEM b	1.54	0.22	Equal variances assumed	122	3.34	1.32	46	2.67	1.48	2.80	166.00	0.01	0.66	0.24	0.20	1.13	0.01
E1 I believe things will the	2.34	0.13	Equal variances assumed	122	2.20	1.08	46	1.63	0.88	3.18	166.00	0.00	0.57	0.18	0.21	0.92	0.00
E2 It is crucial to have s	12.88	0.00	Equal variances not assumed	122	1.49	0.73	46	2.07	1.14	-3.17	59.38	0.00	-0.57	0.18	-0.94	-0.21	0.0
E3 It is appropriate to in	19.89	0.00	Equal variances not assumed	122	1.90	1.09	46	2.50	1.55	-2.41	62.52	0.02	-0.60	0.25	-1.09	-0.10	0.05
F1 In a relative sense, r	0.59	0.44 E	Equal variances assumed	122	3.33	1.43	46	2.85	1.40	1.95	166.00	0.05	0.48	0.25	-0.01	0.97	0.05
F2 Primary breadwinnel	0.31	0.58	Equal variances assumed	122	4.05	1.34	46	3.46	1.36	2.55	166.00	0.01	0.59	0.23	0.13	1.05	0.0
F3 Women are born to	1.19	0.28	Equal variances assumed	122	3.40	1.56	46	2.91	1.49	1.83	166.00	0.07	0.49	0.27	-0.04	1.02	0.05
F4 In order to maintain	5.10	0.03 E	Equal variances not assumed	122	4.06	1.40	46	3.28	1.57	2.93	73.64	0.0	0.77	0.26	0.25	1.30	0.0
F5 I believe gender equ	0.06	0.81 E	Equal variances assumed	122	1.80	1.14	46	1.85	1.11	-0.27	166.00	0.79	-0.05	0.20	-0.44	0.33	0.63
G1 Women are equally	12.39	0.00	Equal variances not assumed	122	2.45	1.24	46	1.65	0.85	4.75	118.14	0.00	0.80	0.17	0.47	1.13	<:001
G2 Women equally rect	16.83	0.00	Equal variances not assumed	122	2.40	1.22	46	1.61	0.77	4.98	127.68	0.00	0.79	0.16	0.48	1.11	<:001
G3 The strictness, obje	14.15	0.00	Equal variances not assumed	122	2.29	1.17	46	1.54	0.72	4.94	131.20	0.00	0.74	0.15	0.45	1.04	<:001
G4 Dealing with funders	4.18	0.04 E	Equal variances not assumed	122	2.46	1.26	46	1.91	1.09	2.77	92.87	0.01	0.55	0.20	0.15	0.94	0.01
G5 Women receive the	18.01	0.00	Equal variances not assumed	122	2.74	1.37	46	1.74	0.98	5.25	113.54	0.00	1.00	0.19	0.62	1.38	<:001
G6 Marriage, pregnanc	0.50	0.48	Equal variances assumed	122	3.37	1.51	46	2.39	1.50	3.75	166.00	0.0	0.98	0.26	0.46	1.49	<.001
G7 Female students in	1.04	0.31	Equal variances assumed	122	3.02	1.31	46	2.67	1.42	1.51	166.00	0.13	0.35	0.23	-0.11	0.81	0.13
H1 On balance, my STE	9.47	0.00	Equal variances not assumed	122	2.19	1.07	46	1.98	0.77	1.40	111.67	0.16	0.21	0.15	-0.09	0.51	0.41
H2 I am considered by c	0.53	0.47 E	Equal variances assumed	122	2.31	1.15	46	2.15	1.01	0.83	166.00	0.41	0.16	0.19	-0.22	0.54	0.57
H3 I have not been pers	5.11	0.03 E	Equal variances not assumed	122	2.84	1.37	46	2.07	1.18	3.61	93.21	0.0	0.77	0.21	0.35	1.20	<. 001
H4 My family /partner /fi	0:00	0.34 E	Equal variances assumed	122	1.71	0.97	46	1.76	0.82	-0.29	166.00	0.77	-0.05	0.16	-0.37	0.27	0.40
H5 My current colleague	0.24	0.62 t	Equal variances assumed	122	1.98	1.08	46	1.70	0.87	1.58	166.00	0.12	0.28	0.18	-0.07	0.63	0.14

GISE Report 2022

©2022 INWES & KWSE

S
Щ
$\mathbf{\nabla}$
$\overline{}$
F
ET .
a
E.
· -

					-	ndependent	Samples Te	st: T-Tests									
	Leven	ne's Test for	Equality of Variances			Descriptive	Statistics					t-test fo	r Equality of M	leans			Mann- Whitney LI
Statements	u	Sig.	Result	-emale/non-	Female/non-F	-emale/non-	Male - n	Male - Mean	Male - SD	+	đ	- jignificance	Mean	Std. Error	95% C.I. of	95% C.I. of	symp. Sig.
	[binary - n	binary -	binary - SD				[Two-Sided p	Difference	Difference	Difference -	Difference -	(2-tailed)
•	•	•	•	*	Mean 🔻	•	•	*	•	•	•	•	•	•	Lower 🔻	Upper 🔻	•
B1 Girls and boys are e	8.95	0.00 E	Equal variances not assumed	223	2.13	1.31	359	1.81	1.12	3.09	416.11	0.00	0.33	0.11	0.12	0.53	0.0
B2 Female students in (1.02	0.31 E	Equal variances assumed	223	2.09	1.18	359	1.83	1.11	2.63	580.00	0.01	0.26	0.10	0.06	0.45	0.00
B3 Women in STEM red	24.30	0.00	Equal variances not assumed	223	2.39	1.31	359	1.84	1.08	5.22	406.55	0.00	0.55	0.10	0.34	0.75	<,001
B4 It is equally difficult f	0.00	0.95 E	Equal variances assumed	223	2.41	1.35	359	2.41	1.35	-0.01	580.00	0.99	0.00	0.12	-0.23	0.22	0.99
B5 Being promoted or t	8.27	0.00 E	Equal variances not assumed	223	2.40	1.34	359	2.17	1.20	2.13	432.60	0.03	0.23	0.11	0.02	0.45	0.06
B6 Women in STEM ge	18.59	0.00 E	Equal variances not assumed	223	2.25	1.31	359	1.87	1.09	3.59	408.50	0.00	0.38	0.10	0.17	0.58	<;001
CD1 Women in STEM b	16.28	0.00 E	Equal variances not assumed	223	2.42	1.21	359	1.74	1.02	6.96	412.20	0.00	0.68	0.10	0.49	0.87	<,001
CD2 Women in STEM b	16.38	0.00 E	Equal variances not assumed	223	2.39	1.20	359	1.79	1.02	6.29	412.55	0.00	0.61	0.10	0.42	0.80	<,001
CD3 Women in STEM b	20.74	0.00 E	Equal variances not assumed	223	2.57	1.34	359	2.09	1.12	4.46	410.66	0.00	0.48	0.11	0.27	0.69	<;001
CD4 Women in STEM b	24.64	0.00	Equal variances not assumed	223	2.65	1.34	359	2.09	1.13	5.14	411.78	0.00	0.55	0.11	0.34	0.77	<:001
CD5 Women in STEM b	28.48	0.00 E	Equal variances not assumed	223	2.17	1.26	359	1.71	1.01	4.69	394.39	0.00	0.47	0.10	0.27	0.66	<,001
CD6 Women in STEM b	1.29	0.26 E	Equal variances assumed	223	2.73	1.26	359	2.18	1.26	5.10	580.00	0.00	0.55	0.11	0.34	0.76	<;001
E1 I believe things will the	10.68	0.00	Equal variances not assumed	223	1.78	0.98	359	1.50	0.77	3.56	387.91	0.00	0.27	0.08	0.12	0.43	<,001
E2 It is crucial to have s	6.75	0.01 E	Equal variances not assumed	223	1.52	0.81	359	1.71	0.93	-2.62	520.07	0.01	-0.19	0.07	-0.34	-0.05	0.01
E3 It is appropriate to ir	13.03	0.00	Equal variances not assumed	223	2.12	1.24	359	2.53	1.41	-3.69	516.73	0.00	-0.41	0.11	-0.63	-0.19	<:001
F1 In a relative sense, r	8.50	0.00	Equal variances not assumed	223	3.02	1.49	359	2.62	1.32	3.30	427.38	0.00	0.40	0.12	0.16	0.64	0.00
F2 Primary breadwinne	0.34	0.56 E	Equal variances assumed	223	3.77	1.37	359	3.25	1.42	4.34	580.00	0.00	0.52	0.12	0.28	0.75	<:001
F3 Women are born to	0.49	0.48 E	Equal variances assumed	223	3.37	1.42	359	2.91	1.42	3.82	580.00	0.00	0.46	0.12	0.22	0.70	<;001
F4 In order to maintain	1.10	0.29 E	Equal variances assumed	223	3.75	1.40	359	3.48	1.44	2.24	580.00	0.03	0.27	0.12	0.03	0.51	0.02
F5 I believe gender equ	2.87	0.09 E	Equal variances assumed	223	1.62	1.05	359	1.87	1.14	-2.69	580.00	0.01	-0.25	0.09	-0.44	-0.07	0.00
G1 Women are equally	33.29	0.00	Equal variances not assumed	223	2.24	1.19	359	1.66	0.85	6.35	364.40	0.00	0.58	0.09	0.40	0.76	<:001
G2 Women equally rect	7.70	0.01 E	Equal variances not assumed	223	2.12	1.12	359	1.70	0.00	4.70	395.75	0.00	0.42	0.09	0.24	0.59	<:001
G3 The strictness, obje	2.75	0.10 E	Equal variances assumed	223	2.11	1.12	359	1.78	0.97	3.76	580.00	0.00	0.33	0.09	0.16	0.50	<,001
G4 Dealing with funders	7.70	0.01 E	Equal variances not assumed	223	2.34	1.15	359	1.98	1.05	3.82	439.61	0.00	0.36	0.10	0.18	0.55	<,001
G5 Women receive the	20.29	0.00	Equal variances not assumed	223	2.51	1.35	359	1.94	1.14	5.31	412.64	0.00	0.58	0.11	0.36	0.79	<:001
G6 Marriage, pregnanc	5.31	0.02 E	Equal variances not assumed	223	2.81	1.48	359	2.47	1.35	2.81	438.45	0.01	0.34	0.12	0.10	0.58	0.01
G7 Female students in	0.97	0.33 E	Equal variances assumed	223	2.66	1.28	359	2.87	1.38	-1.82	580.00	0.07	-0.21	0.11	-0.43	0.02	0.07
H1 On balance, my STE	0.28	0.60 E	Equal variances assumed	223	200	0.99	359	1.82	0.82	2.33	580.00	0.02	0.18	0.08	0.03	0.33	0.08
H2 I am considered by (3.24	0.07 E	Equal variances assumed	223	2.08	0.99	359	1.98	0.88	1.18	580.00	0.24	0.09	0.08	-0.06	0.25	0.41
H3 I have not been pers	11.67	0.00	Equal variances not assumed	223	2.32	1.20	359	1.82	1.02	5.15	415.09	0.0	0.50	0.10	0.31	0.69	<u>~</u> 001
H4 My family /partner /fi	3.11	0.08 E	Equal variances assumed	223	1.60	0.87	359	1.55	0.75	0.70	580.00	0.48	0.05	0.07	-0.09	0.18	0.93
H5 My current colleagu	4.90	0.03 E	Equal variances not assumed	223	1.93	1.06	359	1.64	0.87	3.46	400.98	0.00	0.29	0.08	0.13	0.46	<,001

Mathematics - women vs men global comparison

GISE Report 2022

©2022 INWES & KWSE

CES	
D	
EN	
PP	

Whitney U Asymp. Sig. (2-tailed) Mann-0.94 0.84 0.66 95% C.I. of 95% C.I. of Difference -1.25 0.66 0.73 1.03 0.84 1.08 0.17 0.50 0.98 1.03 1.27 1.57 0.45 0.31 0.75 8 Upper 0.36 0.34 0.67 0.67 0.03 0.03 0.41 0.41 0.65 0.13 0.38 0.44 0.45 0.59 0.13 0.42 0.46 0.13 0.09 0.17 0.69 .56 0.14 65).64 .81 Lower 0.15 0.18 0.18 0.16 0.13 0.12 0.16 0.20 Std. Error Difference 0.18 0.18 9 9 0.18 0.12 t-test for Equality of Means Mean Difference 0.69 -0.14 0.63 0.64 0.96 0.31 0.37 0.37 .92 0.48 0.73 0.17 .05 0.98 9 0.19 0.70 0.74 0.49 40 0.18 20.0 0.48 6 8 8 Significance -Two-Sided p 283.00 283.00 161.99 163.45 283.00 283.00 168.10 283.00 283.00 283.00 113.58 283.00 155.72 283.00 283.00 283.00 283.00 168.70 158.20 174.03 150.75 162.40 152.45 159.79 155.94 283.00 283.00 63.51 155.01 283.00 110.01 161.01 ► 5 4.67 4.24 6.47 1.79 1.79 5.88 5.88 6.02 6.01 6.01 6.01 2.69 4.09 5.51 1.41 0.87 5.68 5.05 5.92 4.89 16 5.95 5.18 96.1 19 6.07 6.15 2.79 8 .29 0.56 3.54 Þ 14 .44 .36 .91 0.96 .04 .06 .00 .10 1.02 1.04 0.88 0.83 Þ ទ Male Independent Samples Test: T-Tests Descriptive Statistics Male - Mean .65 .73 1.76 2.22 2.14 2.14 1.81 1.81 1.89 1.89 2.03 2.00 2.00 2.49 1.51 1.51 2.16 2.38 3.04 3.08 3.08 3.08 .76 .81 .69 .80 .80 .84 .84 .97 .97 .57 .53 ► Male - n Female/non-Female/non-binary - binary - binary - SD Wean -.30 .12 .82 .14 .38 .38 .39 1.06 1.34 1.37 1.31 1.35 32 3.00 2.92 2.40 3.21 2.20 2.20 2.02 2.02 3.43 3.43 2.15 2.70 2.28 2.37 2.53 2.53 2.53 2.53 2.53 2.53 2.53 24 1.64 0.01 Equal variances not assumed Equal variances not assumed 0.00 Equal variances not assumed Equal variances not assumed 0.00 Equal variances not assumed 0.04 Equal variances not assumed 0.00 Equal variances not assumed 0.09 Equal variances assumed 0.22 Equal variances assumed 0.33 Equal variances assumed 0.53 Equal variances assumed 0.60 Equal variances assumed 0.67 Equal variances assumed 0.14 Equal variances assumed 0.95 Equal variances assumed 0.08 Equal variances assumed 0.41 Equal variances assumed 0.43 Equal variances assumed 0.36 Equal variances assumed 0.46 Equal variances assumed 0.88 Equal variances assumed).28 Equal variances assumed Levene's Test for Equality of Variances Result 0.0 0.01 ġ 12.43 22.83 0.18 2.25 17.45 11.13 **12.66 6.95 6.95** 2.88 **9.34 9.34** 3.12 1.50 0.67 **4.38** 0.63 15.85 8.93 13.27 10.90 15.51 14.58 0.27 0.95 0.40 0.83 0.54 0.02 7.87 ш G2 Women equally rec G3 The strictness, obje CD6 Women in STEM E11 believe things will · B3 Women in STEM re CD1 Women in STEM CD2 Women in STEM CD3 Women in STEM CD4 Women in STEM F3 Women are born to F5 I believe gender eq G7 Female students in H3 I have not been per Girls and boys are B2 Female students in B5 Being promoted or B6 Women in STEM ge E3 It is appropriate to i F2 Primary breadwinne F4 In order to maintain G1 Women are equally G4 Dealing with funder G5 Women receive the G6 Marriage, pregnan H1 On balance, my ST H2 I am considered by H5 My current colleagu B4 It is equally difficult E2 It is crucial to have F1 In a relative sense, CD5 Women in STEM H4 My family /partner. Statements 5

0.00 <001 0.27 0.47 0.47

0.20

5 8 5 S 8 ē 8.8

<u>ê</u> ê 8

0.05

<u>6</u> 6

Natural Sciences - women vs men global comparison

GISE Report 2022

©2022 INWES & KWSE

135

0.16

9

0.58

CES	
DIC	
Ä	
APF	

						Independe	ent Samples	Test: T-Test	s								
	Lever	ne's Test for	Equality of Variances			Descript	ive Statistics					t-test fo	or Equality of I	Means			Mann- Nhitney U
Statements	u	Sig.	Result	Female/no	n-Female/no	in-Female/no	n- Male - n	Male - Mea	n Male - SD	-	đ	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of A	symp. Sig.
			L	binary - n	binary -	binary - SI	C	Γ	[Two-Sided p	Difference	Difference	Difference - I	Difference -	(2-tailed)
↓	4	*	4		Mean	•	F		*	•	•	•	*	4	Lower *	Upper 🔻	•
B1 Girls and boys are e	0.34	0.56 E	Equal variances assumed		17 2.3	32 1.2	27 4	7 1.8	1.17	2.02	92.00	0.05	0.51	0.25	0.01	1.01	0.02
B2 Female students in	0.74	0.39 E	Equal variances assumed		17 2.5	56 1.3	32 4	7 2.0	1.44	1.64	92.00	0.10	0.47	0.28	-0.10	1.03	0.03
B3 Women in STEM re(2.58	0.11 E	Equal variances assumed		17 2.7	72 1.3	39 4	7 2.0	1.27	2.48	92.00	0.02	0.68	0.27	0.13	1.23	0.02
B4 It is equally difficult f	9.98	0.00 E	Equal variances not assumed		17 3.0	1.0	15 4	7 2.6	1.48	1.52	82.98	0.13	0.40	0.27	-0.12	0.93	0.08
B5 Being promoted or t	2.78	0.10 E	Equal variances assumed		17 2.7	79 1.2	20 4	7 2.5	1.43	0.86	92.00	0.39	0.23	0.27	-0.31	0.77	0.27
B6 Women in STEM ge	0.00	0.98 E	Equal variances assumed		17 2.6	54 1.4	11 4	7 2.3	1.44	1.16	92.00	0.25	0.34	0.29	-0.24	0.92	0.19
CD1 Women in STEM t	7.94	0.01 E	qual variances not assumed		17 2.7	79 1.5	38	7 1.5	1.04	3.29	85.51	0.00	0.83	0.25	0.33	1.33	0.00
CD2 Women in STEM t	1.03	0.31 E	Equal variances assumed	-	17 2.6	52 1.4	14	7 2.2	6 1.29	1.28	92.00	0.20	0.36	0.28	-0.20	0.92	0.22
CD3 Women in STEM t	1.62	0.21 E	Equal variances assumed	-	17 2.5	94 1.4	19 4	7 2.6	6 1.34	0.94	92.00	0.35	0.28	0.29	-0.30	0.86	0.41
CD4 Women in STEM t	1.29	0.26 E	Equal variances assumed	-	17 2.7	1.4	17 4	7 2.7	1.33	0.22	92.00	0.83	0.06	0.29	-0.51	0.64	0.94
CD5 Women in STEM t	09:0	0.44 E	Equal variances assumed	-	17 2.5	32 1.2	24 4	7 2.2	3 1.29	0.33	92.00	0.74	0.09	0.26	-0.43	09.0	0.66
CD6 Women in STEM t	0.03	0.87 E	Equal variances assumed	-	17 3.0	04 1.5	35 4	7 2.5	77 1.36	1.67	92.00	0.10	0.47	0.28	-0.09	1.02	0.09
E1 I believe things will t	1.45	0.23 E	Equal variances assumed	•	17 2.0	30 0.5	37 4	7 1.4	0.86	3.26	92.00	0.00	0.62	0.19	0.24	0.99	<:001
E2 It is crucial to have s	4.29	0.04 E	Equal variances not assumed		1.5 1.5	55 0.7	77 4	7 1.7	7 0.98	-1.17	87.25	0.25	-0.21	0.18	-0.58	0.15	0.39
E3 It is appropriate to ir	15.31	0.00 E	Equal variances not assumed	•	17 2.0	74 1.0	00 4	7 2.5	3 1.46	-1.90	81.41	0.06	-0.49	0.26	-1.00	0.02	0.16
F1 In a relative sense, I	1.07	0.30 E	equal variances assumed	-	17 3.0	36 1.5	51 4	7 2.6	1.37	1.36	92.00	0.18	0.40	0:30	-0.19	1.00	0.20
F2 Primary breadwinne	1.70	0.20 E	Equal variances assumed	-	17 3.6	31 1.5	58	7 3.4	1.39	1.24	92.00	0.22	0.38	0.31	-0.23	0.99	0.13
F3 Women are born to	3.13	0.08 E	Equal variances assumed	-	17 3.5	38 1.5	55 4	7 3.1	5 1.35	0.78	92.00	0.44	0.23	0.30	-0.36	0.83	0.39
F4 In order to maintain	0.58	0.45 E	Equal variances assumed	4	17 4.0	36 1.2	29	7 3.4	1.36	2.33	92.00	0.02	0.64	0.27	0.09	1.18	0.01
F5 I believe gender equ	0:0	0.77 E	Equal variances assumed		1.5	36 1.2	25 4	7 1.8	1.16	0.43	92.00	0.67	0.11	0.25	-0.39	09:0	0.68
G1 Women are equally	8.56	0.00 E	Equal variances not assumed	•	17 2.4	47 1.5	33 4	7 1.8	7 0.95	2.50	83.01	0.01	0.60	0.24	0.12	1.07	0.03
G2 Women equally reco	8.49	0.00 E	Equal variances not assumed	•	17 2.6	58 1.4	10 4	7 1.8	1.03	3.36	84.43	0.00	0.85	0.25	0.35	1.35	0.0
G3 The strictness, obje	4.85	0.03 E	Equal variances not assumed	•	17 2.2	28	31 4	7 1.8	1.01	1.67	86.42	0.10	0.40	0.24	-0.08	0.89	0.17
G4 Dealing with funder	0.07	0.79 E	Equal variances assumed		7 2.4	45 1.2	25	7 2.0	1.23	1.41	92.00	0.16	0.36	0.26	-0.15	0.87	0.12
G5 Women receive the	0.04	0.85 E	Equal variances assumed		17 2.4	45 1.2	23 4	7 2.0	1.25	1.58	92.00	0.12	0.40	0.26	-0.10	0.91	0.07
G6 Marriage, pregnanc	4.84	0.03 E	Equal variances not assumed	•	17 3.5	32 1.6	52 4	7 2.3	1.38	3.02	89.71	0.00	0.94	0.31	0.32	1.55	0.01
G7 Female students in	0.31	0.58 E	Equal variances assumed	•	17 2.9	38 1.2	22	7 2.8	1.31	0.41	92.00	0.69	0.11	0.26	-0.41	0.63	0.64
H1 On balance, my STE	0.00	0.99 E	qual variances assumed	-	17 2.1	15 1.0	00	7 1.6	1.03	1.22	92.00	0.22	0.26	0.21	-0.16	0.67	0.14
H2 I am considered by (0.79	0.38 E	qual variances assumed	-	17 2.1	11 1.0	77 4	7 1.5	18 0.94	0.61	92.00	0.54	0.13	0.21	-0.29	0.54	0.64
H3 I have not been per	4.06	0.05 E	Equal variances not assumed	-	17 2.4	45	33	7 1.6	1.06	2.32	87.43	0.02	0.57	0.25	0.08	1.07	0.03
H4 My family /partner /f	0:06	0.80 E	equal variances assumed	-	1.6	5.0	33 4	7 1.6	80.08	0.0	92.00	1.00	0.00	0.20	-0.39	0.39	1.00
H5 My current colleagu	1.43	0.23 E	Equal variances assumed	-	17 2.0	04 1.1	18 4	7 1.6	60.93	1.65	92.00	0.10	0.36	0.22	-0.07	0.80	0.14

Other Technologies - women vs men global comparison

GISE Report 2022

©2022 INWES & KWSE

CES	
ğ	
E	
Ы	
\triangleleft	

comparison
global
s men
SN US
wome
1 20
Science
Socia

				-	dependent	Samples Te	st: T-Tests									
12	r Equality of	Variances			Descriptive	Statistics					t-test fo	or Equality of I	Means			Mann- Whitney U
		Result	emale/non-	Female/non-F	emale/non-	Male - n	Male - Mean	Male - SD	-	5	öignificance - Two-Sided n	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
P		Þ	Dinary - n	Mean V		Þ	•	Þ	Þ	•	Þ					
12	0 Equal varia	nces not assumed	106	2.21	1.40	88	1.75	1.05	2.60	190.28	0.01	0.46	0.18	0.11	0.81	0.03
0	2 Equal varia	nces not assumed	106	2.27	1.29	88	1.76	0.97	3.15	190.23	0.0	0.51	0.16	0.19	0.83	0.00
0.0	D Equal varia	nces not assumed	106	2.52	1.40	88	1.98	1.19	2.91	191.82	0.00	0.54	0.19	0.17	0.91	0.00
2	0 Equal varia	nces not assumed	106	2.76	1.44	88	2.09	1.22	3.52	191.94	0.00	0.67	0.19	0.30	1.05	<:001
0.0	D Equal varia	nces not assumed	106	2.66	1.46	88	2.03	1.11	3.39	190.56	0.00	0.63	0.18	0.26	0.99	0.00
5	3 Equal varian	ices assumed	106	2.39	1.27	88	1.89	1.14	2.86	192.00	0.00	0:50	0.17	0.16	0.85	0.00
2	0 Equal varia	nces not assumed	106	2.55	1.33	88	1.78	1.02	4.51	190.88	0.00	0.76	0.17	0.43	1.10	<,001
-	00 Equal varia	nces not assumed	106	2.59	1.30	88	1.94	1.14	3.72	191.44	0.00	0.65	0.18	0.31	1.00	<,001
ci.	00 Equal varia	nces not assumed	106	2.66	1.28	88	2.05	1.03	3.71	191.81	00'0	0.61	0.17	0.29	0.94	<,001
0	.01 Equal varia	nces not assumed	106	2.83	1.31	88	2.11	1.13	4.10	191.67	0.0	0.72	0.17	0.37	1.06	<,001
0	.01 Equal varia	nces not assumed	106	2.32	1.25	8	1.80	1.06	3.16	191.91	0.00	0.53	0.17	0.20	0.85	0.0
	.16 Equal varian	ices assumed	106	3.08	1.32	88	2.24	1.29	4.49	192.00	0.00	0.85	0.19	0.47	1.22	<,001
c.	00 Equal varia	nces not assumed	106	1.75	0.95	88	1.30	0.57	4.14	175.59	0.00	0.46	0.11	0.24	0.68	<,001
0	.02 Equal varia	nces not assumed	106	1.42	0.85	88	1.31	0.61	1.12	188.49	0.27	0.12	0.11	-0.09	0.33	0.62
0	1.14 Equal varian	ices assumed	106	1.67	1.01	88	1.73	1.21	-0.36	192.00	0.72	-0.06	0.16	-0.37	0.26	0.71
	0.00 Equal varia	nces not assumed	106	3.03	1.56	88	2.18	1.38	4.01	191.31	0.00	0.85	0.21	0.43	1.26	<:001
_	0.09 Equal varian	ices assumed	106	3.50	1.53	88	2.68	1.43	3.83	192.00	0.00	0.82	0.21	0.40	1.24	<,001
_	0.00 Equal varia	nces not assumed	106	3.34	1.58	88	2.43	1.33	4.34	191.98	0.00	0.91	0.21	0.50	1.32	<:001
).21 Equal varian	ices assumed	106	3.73	1.50	88	2.69	1.46	4.83	192.00	0.00	1.03	0.21	0.61	1.45	<:001
-	0.11 Equal varian	ices assumed	106	1.48	0.94	88	1.70	1.10	-1.53	192.00	0.13	-0.22	0.15	-0.51	0.06	0.08
_	0.00 Equal varia	nces not assumed	106	2.31	1.32	88	1.88	1.00	2.61	190.62	0.01	0.44	0.17	0.11	0.77	0.03
_	0.00 Equal varia	nces not assumed	106	2.35	1.38	88	1.60	0.81	4.68	174.03	0.00	0.75	0.16	0.43	1.06	<,001
_	0.00 Equal varia	nces not assumed	106	2.22	1.32	88	1.72	0.93	3.09	187.66	0.0	0.50	0.16	0.18	0.82	0.01
-	0.42 Equal varian	ices assumed	106	2.25	1.23	88	1.94	1.16	1.75	192.00	0.08	0.30	0.17	-0.04	0.64	0:05
-	0.00 Equal varia	nces not assumed	106	2.58	1.43	88	1.90	1.08	3.80	190.40	00.0	0.69	0.18	0.33	1.04	<,001
	0.00 Equal varia	nces not assumed	106	2.81	1.55	88	1.95	1.22	4.30	191.51	0.0	0.86	0.20	0.46	1.25	<:001
-	0.47 Equal varian	ices assumed	106	2.58	1.26	88	2.60	1.34	-0.09	192.00	0.93	-0.02	0.19	-0.39	0.35	0.98
-	0.47 Equal varian	ices assumed	106	2.11	1.03	88	1.99	1.01	0.85	192.00	0.40	0.12	0.15	-0.17	0.41	0.36
-	0.08 Equal varian	ices assumed	106	2.02	1.00	88	1.99	1.11	0.20	192.00	0.84	0.03	0.15	-0.27	0.33	0.61
_	0.00 Equal varia	nces not assumed	106	2.59	1.36	88	1.87	1.01	4.20	189.83	0.0	0.72	0.17	0.38	1.06	<:001
-	0.21 Equal varian	ices assumed	106	1.70	1.05	88	1.68	0.84	0.12	192.00	0.91	0.02	0.14	-0.26	0.29	0.51
).63 Equal varian	ices assumed	106	1.92	1.08	88	1.70	0.92	1.44	192.00	0.15	0.21	0.15	-0.08	0.50	0.18

GISE Report 2022

©2022 INWES & KWSE

CES	
NDIC	
PEN	
AP	

B-5. By Countries/Regions

Two-way comparisons between the following are given here of countries or regions compared to all other regions. These are binary comparisons: i.e. the responses from a country/region are compared to the responses from all other countries/regions. In the tables below, any data in BLUE indicates where the p-value (the probability that the results occurred by chance) is very low, hence indicating the averages and standard deviations are not by chance (alpha = 0.05).

Data in GREEN are for statements where respondents from elsewhere are more likely to disagree than the named region or country being considered. Data in RED are for statements where respondents from the named region/country are more likely to disagree Data in GREEN and RED indicate where the mean differences between the named region or country and all other regions are notable. compared to respondents from elsewhere. Where the mean difference values were between 0.75 and -0.5, these results are generally not highlighted in RED or GREEN, other than where there are no obvious notable results, when the RED and GREEN are used to indicate the statements where there was highest disagreement.

The following do not include late responses.

©2022 INWES & KWSE

South Korea vs. all other regions

œ		Mann- Whitney U	Asymp. Sig.	(2-tailed)	•	<.001	0.18	<.001	<.001	0.02	<.001	<.001	<,001	<.001	<.001	<.001	<.001	<.001	0.01	0.13	<.001	<.001	<.001	<.001	<,001	<.001	<.001	<.001	<,001	<,001	<.001	0.19	<.001	0.12	<.001	0.07	<.001
a			95% C.I. of	Difference -	Upper 🔻	-0.09	0.13	-0.27	-0.14	-0.06	-0.09	-0.62	-0.48	-0.49	-0.47	-0.40	-0.86	-0.45	-0.03	0.39	-0.55	-0.74	-0.24	-0.72	-0.12	-0.58	-0.54	-0.37	-0.39	-0.37	-1.23	0.07	-0.22	0.05	-0.42	0.04	-0.14
٩			95% C.I. of	Difference -	× lower	-0.49	-0.27	-0.69	-0.57	-0.51	-0.51	-1.08	-0.95	-0.91	-0.90	-0.86	-1.24	-0.80	-0.35	0.02	-0.95	-1.04	-0.65	-1.01	-0.49	-0.95	-0.93	-0.75	-0.77	-0.79	-1.59	-0.33	-0.56	-0.28	-0.83	-0.25	-0.47
0		Means	Std. Error	Difference	•	0.10	0.10	0.11	0.11	0.11	0.11	0.12	0.12	0.11	0.11	0.12	0.10	0.09	0.08	0.09	0.10	0.08	0.10	0.07	0.09	0.09	0.10	0.10	0.10	0.11	0.09	0.10	0.09	0.08	0.11	0.07	0.08
z		r Equality of I	Mean	Difference	•	-0.29	-0.07	-0.48	-0.36	-0.28	-0.30	-0.85	-0.72	-0.70	-0.68	-0.63	-1.05	-0.63	-0.19	0.21	-0.75	-0.89	-0.44	-0.87	-0.30	-0.76	-0.73	-0.56	-0.58	-0.58	-1.41	-0.13	-0.39	-0.11	-0.62	-0.10	-0.30
W		t-test for	Significance -	Two-Sided p	•	0.00	0.49	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.00	0.17	0.00	0.15	0.00
_			đ		•	1908.00	1908.00	1908.00	1908.00	179.82	1908.00	177.64	177.51	1908.00	1908.00	175.85	196.11	177.00	176.77	195.40	198.14	251.47	199.07	266.72	1908.00	1908.00	180.81	180.75	1908.00	1908.00	212.50	189.68	179.33	1908.00	1908.00	1908.00	1908.00
×			+		•	-2.82	-0.68	-4.48	-3.23	-2.47	-2.83	-7.23	-6.07	-6.44	-6.29	-5.46	-10.80	-7.11	-2.29	2.21	-7.33	-11.80	-4.25	-11.82	-3.24	-8.07	-7.37	-5.71	-6.08	-5.38	-15.34	-1.26	-4.47	-1.37	-5.90	-1.42	-3.61
7			South	Korea - SD	•	1.10	1.10	123	1.32	1.37	1.16	1.42	1.42	1.34	1.35	1.39	1.14	1.07	0.99	1.10	1.20	0.84	1.22	0.80	1.18	1.14	1.20	1.18	1.12	1.22	1.06	1.23	1.04	0.98	1.24	0.90	1.07
_	est: T-Tests		South	Korea -	Mean 🔻	2.28	2.12	2.70	2.79	2.60	2.50	3.03	2.90	3.13	3.12	2.62	3.64	2.32	1.74	1.98	3.60	4.37	3.55	4.43	2.06	2.76	2.72	2.53	2.68	2.80	4.09	2.94	2.33	2.17	2.81	1.71	2.08
т	Samples T	Statistics	South	Korea - n	•	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156
U	dependent	Descriptive	Other GISE	regions -	≥I0 ▲	1.24	1.21	1.29	1.33	1.28	1.29	1.27	1.27	1.30	1.30	1.19	1.36	0.94	0.87	1.30	1.46	1.48	1.50	1.50	1.11	1.13	1.14	1.12	1.15	1.29	1.48	1.35	0.96	1.00	1.27	0.88	0.99
Ŀ	-		Other GISE	regions -	Mean 🔻	1.99	2.05	2.22	2.44	2.32	2.20	2.18	2.19	2.43	2.44	1.99	2.59	1.69	1.56	2.19	2.85	3.47	3.11	3.56	1.76	2.00	1.98	1.97	2.10	2.22	2.68	2.81	1.95	2.05	2.18	1.60	1.78
ш			Other GISE	regions - n	•	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754	1754
٩		uality of Variances	sult		4	ual variances assumed	ual variances assumed	ual variances assumed	ual variances assumed	ual variances not assumed	ual variances assumed	ual variances not assumed	ual variances not assumed	ual variances assumed	ual variances assumed	ual variances not assumed	ual variances not assumed	ual variances not assumed	ual variances not assumed	ual variances not assumed	ual variances not assumed	ual variances not assumed	ual variances not assumed	ual variances not assumed	ual variances assumed	ual variances assumed	ual variances not assumed	ual variances not assumed	ual variances assumed	ual variances assumed	ual variances not assumed	ual variances not assumed	ual variances not assumed	ual variances assumed	ual variances assumed	ual variances assumed	ual variances assumed
U		e's Test for Eq	Sig. Re		•	0.54 Equ	0.35 Equ	0.56 Equ	0.94 Equ	0.02 Eq	0.15 Equ	0.00 Eq	0.00 Eq	0.34 Equ	0.38 Equ	0.00 Eq	0.00 Eq	0.00 Eq	0.02 Eq	0.00 Eq	0.00 Eq	0.00 Eq	0.00 Eq	0.00 Eq	0.31 Equ	0.05 Equ	0.01 Eq	0.01 Eq	0.59 Equ	0.69 Equ	0.00 Eq	0.04 Eq	0.01 Eq	0.67 Equ	0.95 Equ	0.93 Equ	0.62 Equ
8		Levene	L.		•	0.37	0.87	0.34	0.01	5.50	2.12	11.33	13.30	0.91	0.77	24.74	23.93	10.01	5.08	9.73	18.68	150.50	20.87	187.67	1.04	3.79	6.72	7.39	0.28	0.16	86.26	4.22	7.63	0.19	0.00	0.01	0.25
A	1	2	Statements		4	4 B1 Girls and boys are	5 B2 Female students in	B3 Women in STEM r	7 B4 It is equally difficult	8 B5 Being promoted or	9 B6 Women in STEM g	10 CD1 Women in STEM	11 CD2 Women in STEM	12 CD3 Women in STEM	13 CD4 Women in STEM	14 CD5 Women in STEM	15 CD6 Women in STEM	18 E11 believe things will	17 E2 It is crucial to have	18 E3 It is appropriate to	19 F1 In a relative sense,	20 F2 Primary breadwinn	21 F3 Women are born to	22 F4 In order to maintair	23 F5 I believe gender eq	24 G1 Women are equal!	25 G2 Women equally re	26 G3 The strictness, obj	27 G4 Dealing with funde	28 G5 Women receive the	29 G6 Marriage, pregnan	30 G7 Female students it	31 H1 On balance, my S	32 H2 I am considered by	33 H3 I have not been per	34 H4 My family /partner	35 H5 My current colleag

GISE Report 2022

©2022 INWES & KWSE

CES	
Ī	
Ä	
PP	
\triangleleft	

					Independ	ent Samples	Test: T-Tes	sts								
	evene's Te	est for Equality of Variances			Descriptive	Statistics					t-test for	Equality of	Means			Mann-
Statements F	Sia	Result	Other GISE	Other GISE	Other GISE	Africa - n	Africa -	Africa - SD	-	з ЭР	ignificance -	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
			regions	regions -	regions -		Mean			Ē	ro-Sided p	Difference	Difference	Difference -	Difference -	(2-tailed)
•	P F	4	•	Mean 🔻	SD 🔻	•	¥	*	•	•	•	•	*	Lover 🔻	Upper 🔻	•
B1Girls and boys are 2.42	0.12	Equal variances assumed	1474	2.05	123	436	1.88	1.21	2.47	1308.00	0.01	0.17	0.07	0.03	0:30	0.01
B2 Female students in 4.47	0.03	Equal variances not assumed	1474	2π	1.21	436	1.87	115	3.74	742.81	0.00	0.24	0.06	0.11	0.36	100.>
B3 Women in STEM re 8.59	0.00	Equal variances not assumed	1474	2.31	129	436	2.07	1.25	3.49	730.03	0.0	0.24	0.07	0.10	0.38	100.>
B4 It is equally difficult 14.95	0.00	Equal variances not assumed	1474	2.54	1.34	436	2.23	1.26	4.32	750.43	0.00	0:30	0.07	0.16	0.44	100.>
B5 Being promoted of 6.13	0.01	Equal variances not assumed	1474	2.38	130	436	2.24	1.25	2.04	731.93	0.04	0.14	0.07	00.0	0.28	0.05
B6 Women in STEM g 23.65	9 0.00	Equal variances not assumed	1474	2.32	130	436	1.90	1.19	6.30	763.86	0.00	0.42	0.07	0.29	0.55	(001)
CD1 Women in STEM 18.93	0.00	Equal variances not assumed	1474	2.27	133	436	217	1.21	159	771.90	0.11	0.11	0.07	-0.02	0.24	0.39
CD2 Women in STEM 1.87	0.17	Equal variances assumed	1474	2.24	130	436	2.26	1.27	6. Q	1908.00	0.85	-0.01	0.07	-0.15	0.12	0.59
CD3 Women in STEM 0.29	0.59	Equal variances assumed	1474	2.46	131	436	2.57	1.34	-160	1908.00	0.11	-0.11	0.07	-0.26	0.03	0.13
CD4 Women in STEM 0.31	0.58	Equal variances assumed	1474	2.47	131	436	2.59	131	-167	1908.00	0.09	-0.12	0.07	-0.26	0.02	0.08
CD5 Women in STEM 1.84	0.18	Equal variances assumed	1474	2.04	123	436	2.03	122	0.15	1908.00	0.88	0.01	0.07	-0.12	0.14	0.97
CD6 Women in STEM 2.75	0.10	Equal variances assumed	1474	271	138	436	2.57	1.32	188	1308.00	0.06	0.14	0.07	-0:04	0.29	0.08
E11 believe things will 1 93.00	3 0.00	Equal variances not assumed	1474	186	101	436	1.36	0.67	12.05	1072.43	0.00	0:50	0.04	0.42	0.58	(001)
E2 It is crucial to have 121.0	8 0.00	Equal variances not assumed	1474	1.66	0.91	436	1.27	0.66	9.95	381.38	0.00	0.39	0.04	0.32	0.47	.001
E3 It is appropriate to i 135.3	10 O.OO	Equal variances not assumed	1474	2.37	1.32	436	1.51	0:30	15.49	1046.84	0.00	0.85	0.05	0.74	0.96	.001
F1In a relative sense, 3.26	0.07	Equal variances assumed	1474	31	141	436	2.24	139	11.33	1308.00	0.0	0.87	0.08	0.72	1.02	001
F2 Primary breadwinn 0.64	0.42	Equal variances assumed	1474	3.78	140	436	2.77	139	13.22	1308.00	0.0	1.00	0.08	0.86	1.15	001
F3 Women are born to 1.20	0.27	Equal variances assumed	1474	3.34	1.44	1 36	2.50	143	10.65	1308.00	0.0	0.84	0.08	0.68	0.99	<.001
F4 In order to maintair 11.66	0.00	Equal variances not assumed	1474	3.90	137	436	2.74	1.48	14.64	671.04	0.0	1.16	0.08	1.01	1.32	<.001
F51 believe gender eq 4.38	0.04	Equal variances not assumed	1474	183	113	436	1.62	1.08	3.58	741.34	0.0	0.21	0.06	0.10	0.33	(001)
G1 Women are equally 3.11	0.08	Equal variances assumed	1474	2.12	1.16	436	1.86	109	4.14	1908.00	0.00	0.26	0.06	0.14	0.38	.001
G2 Women equally re 28.10	0.00	Equal variances not assumed	1474	2.14	1.19	436	1.72	0.39	7.33	841.17	0.00	0.41	0.06	0.30	0.53	100.>
G3 The strictness, ob 4.77	0.03	Equal variances not assumed	1474	2.08	1.15	436	1.79	1.06	4.80	758.72	0.00	0.28	0.06	0.17	0.40	.001
G4 Dealing with funde 0.27	0.60	Equal variances assumed	1474	2.19	1.14	436	2.00	1:18	2.90	1908.00	0.0	0.18	0.06	0.06	0.31	100.
G5 Women receive th 4.91	0.03	Equal variances not assumed	1474	231	130	436	2.12	1.28	2.73	719.85	0.01	0.19	20.0	0.05	0.33	0.00
G6 Marriage, pregnar 2.67	0.10	Equal variances assumed	1474	2.92	1.46	436	2.37	1.54	6.84	1908.00	0.0	0.55	0.08	0.39	0.71	001
G7 Female students il 2.36	0.12	Equal variances assumed	1474	2.93	132	436	2.47	1.34	6.24	1308.00	0.0	0.45	0.07	0.31	0.59	100.>
H1On balance, my S14.88	0.03	Equal variances not assumed	1474	201	0.96	436	1.86	<u>9</u>	281	689.58	0.0	0.15	0.05	0.05	0.26	,001
H21 am considered by 2.51	0.1	Equal variances assumed	1474	213	0.39	436	183	ē	58	1908.00	8.0	0.31	0.05	0.20	0.41	,001
H31have not been pe 0.26	0.61	Equal variances assumed	1474	2.26	1.27	1 36	2.14	1.32	5	1308.00	0.09	0.12	0.07	-0.02	0.26	0.02
H4 My family /partner (0.18	0.67	Equal variances assumed	1474	162	0.87	436	1.56	0.91	139	1908.00	0.16	0.07	0.05	-0.03	0.16	0.04
H5 My current colleag 2.19	0.14	Equal variances assumed	1474	183	0.33	436	1.74	1.05	166	1908.00	0.10	0.0	0.05	-0.02	0.20	0.0

140

©2022 INWES & KWSE

GISE Report 2022

CES	
DI	
E	
P I	

India vs. all other regions

						ndependent	Samples Tex	st: T-Tests									
	Lever	ne's Test fo	or Equality of Variances			Descriptive	Statistics					t-test for	Equality of	Means			Mann- Vhitneu II
Statements	Ŀ	ŝ	Result	Other GISE	Other GISE	Other GISE	India - n	- India -	India - SD	-	÷	Significanc	Mean	Std. Error	95% C.I. of	95x C.I. of	Asymp. Sig.
+	F	*	•	regions 🚽	regions - Mean ▼	regions - SD	Þ	Mean	•	×	Þ	e - Two-	Difference	Difference	Difference - Lover 🔻	Difference - Upper 🔻	(2-tailed)
B1Girls and boys are	37.26	0.00	Equal variances not assumed	1008	2.17	1.31	902	183	11	6.06	1902.76	0.00	0.33	0.06	0.23	0.44	(.001)
B2 Female students il	12.44	0.00	Equal variances not assumed	1008	2.16	1.24	902	133	1.15	4.36	1905.70	0.0	0.24	0.05	0.13	0.34	.001
B3 Women in STEM re	57.22	0.00	Equal variances not assumed	1008	2.47	1.34	902	2.02	118	7.92	1907.56	0.00	0.46	0.06	0.34	0.57	100.5
B4 It is equally difficul	0.06	0.81	Equal variances assumed	1008	2.56	1.32	902	2.36	133	3.27	1908.00	0.0	0.20	0.06	0.08	0.32	.001
B5 Being promoted o	32.89	0.00	Equal variances not assumed	1008	2.51	1.34	302	2.16	121	5.38	1907.90	0.00	0.35	0.06	0.23	0.46	100.5
B6 Women in STEM g	45.39	0.00	Equal variances not assumed	1008	2.38	135	902	2.04	1.18	5.35	1907.37	0.00	0.35	0.06	0.23	0.46	.001
CD1 Women in STEM	109.47	0.0	Equal variances not assumed	1008	2.59	138	902	187	108	12.76	1879.39	0.0	0.72	0.06	0.61	0.83	<.001
CD2 Women in STEM	110.43	0.00	Equal variances not assumed	100	256	138	905	130	109	11.63	1880.80	0.0	0.66	0.06	0.55	0.77	, 001
CD3 Women in STEM	71.44	0.00	Equal variances not assumed	<u>108</u>	280	138	902	2.14	14	11.38	1897.15	0.0	0.66	0.06	0.54	0.77	<.001
CD4 Women in STEM	50.26	0.00	Equal variances not assumed	1008	2.82	136	902	2.13	1.16	12.02	1903.41	0.00	0.69	0.06	0.58	0.80	.001
CD5 Women in STEM	31.68	0.00	Equal variances not assumed	1008	2.22	129	902	18	Ē	7.12	1905.19	0.0	0.39	0.05	0.28	0.50	.001
CD6 Women in STEM	6.57	0.01	Equal variances not assumed	1008	3.02	135	902	2.30	1.29	11.81	1900.65	0.00	0.7	0.06	09.0	0.83	.001
E11 believe things will	34.00	0.00	Equal variances not assumed	1008	1.90	105	902	157	0.82	7.53	1875.67	0.00	0.32	0.04	0.24	0.41	,001
E2 It is crucial to have	28.72	0.00	Equal variances not assumed	1008	1.47	0.81	902	168	0.33	-5.10	1799.46	0.00	-0.21	0.04	-0.28	-0.13	.001
E3 It is appropriate to	95.21	0.00	Equal variances not assumed	1008	188	11	902	2.50	139	-10.75	1720.81	0.00	-0.62	0.06	-0.74	-0.51	.001
F1In a relative sense,	54.44	0.00	Equal variances not assumed	100	3.10	<u>15</u>	905	2.70	133	6.12	1906.49	0.0	0.40	0.07	0.27	0.53	, 001
F2 Primary breadwinn	0.0	0.96	Equal variances assumed	100	3.65	145	902	3.43	1.46	3.20	1908.00	0.0	0.21	0.07	0.08	0.34	<.001
F3 Women are born to	6.19	0.01	Equal variances not assumed	100	3.18	150	902	3.10	1.46	1.14	1896.34	0.25	0.08	0.07	-0.06	0.21	0.29
F4 In order to maintair	0.45	0:50	Equal variances assumed	1008	3.68	1.49	902	3.59	1.46	13	1908.00	0.16	0.09	0.07	-0.04	0.23	0.11
F51believe gender ed	3.21	0.07	Equal variances assumed	1008	1.79	1.16	902	1.78	100	0.28	1908.00	0.78	0:0	0.05	-0.09	0.12	0.59
G1 Women are equal	121.56	0.00	Equal variances not assumed	1008	229	126	302	181	0.95	9.52	1857.68	0.00	0.48	0.05	0.38	0.58	.001
G2 Women equally re	84.08	0.00	Equal variances not assumed	100	223	127	902	184	0.39	7.44	1873.61	0.0	0.38	0.05	0.28	0.49	100.>
G3 The strictness, ob	63.05	0.00	Equal variances not assumed	100	2.15	1.24	302	186	0.38	5.78	1878.47	0.0	0.23	0.05	0.19	0.39	, 001
G4 Dealing with funde	72.62	0.00	Equal variances not assumed	1008	228	1.24	902	139	103	5.66	1895.91	0.00	0.29	0.05	0.19	0.40	.001
G5 Women receive th	115.14	0.00	Equal variances not assumed	1008	2.49	139	902	2.02	113	8.18	1892.54	0.0	0.47	0.06	0.36	0.59	(100.)
G6 Marriage, pregnar	82.33	0.00	Equal variances not assumed	1008	3.02	159	302	2.54	1.35	71.17	1902.71	0.00	0.48	20:0	0.35	0.61	.001
G7 Female students i	2.78	0.10	Equal variances assumed	1008	286	135	302	2.78	1.32	123	1908.00	0.22	0.08	0.06	-0.04	0.20	0.27
H1On balance, my S	18.31	0.0	Equal variances not assumed	100	210	1 <u>5</u>	302	<u>18</u>	0.85	5.81	1887.15	8.0	0.25	0.04	0.17	0.34	,001
H2I am considered by	42.53	0.00	Equal variances not assumed	100	210	1 08	902	202	0:30	181	1898.30	0:07	0.08	0.05	-0.01	0.17	0.60
H3 I have not been pe	177.86	0.00	Equal variances not assumed	100	2.49	141	902	135	105	9.53	1852.20	0.0	0.54	0.06	0.43	0.65	.001
H4 My family (partner	0.91	0.34	Equal variances assumed	90 <u>0</u>	160	0.92	302	162	0.83 0.83	-0.51	1908.00	061	-0.02	0.04	0.10 -	90.0	0.10
H5 My current colleag	11.80	0.0	Equal variances not assumed	<u>100</u>	130	9 <u>1</u>	305	F.:	0.83	4.23	1894.81	8.0	0.19	0.05	0.10	0.28	0.00

GISE Report 2022

©2022 INWES & KWSE

CES	
Ĭ	
PEN	
P	

Japan vs. all other regions

	Mann-	/hitney U sump. Sig.	(2-tailed)	•	0.01	100.>	100.>	100.>	0.10	100.>	100.>	, 001	100.)	100.>	0.53	100.>	100.5	0.03	0.62	, 001	100.>	100.>	100.>	100.>	100.5	100.>	100.>	100.5	100.>	100.>	100.>	100.)	100.>	100.>	600
		ZCL of A	fference -	Upper 🔻	-0.04	-0.44	-0.50	-0.21	60:0	-0.46	-0.77	-0.58	-0.34	-0.54	0.12	6210-	89 -0	0.05	0.34	ē.	-102	-0.50	-0.87	₽. 1	-0.56	-0.55	-0.29	-0.15	-0.33	-0.40	0210-	-0.53	-0.47	82.0-	0.04
		X C.L of 95	ference - Dif	Lower 🔻	-0.48	-0.88	-0.96	-0.66	-0.35	-0.89	-125	-108	-0.79	-0.97	-0.32	-125	-125	-0.25	Ю. О	-138	-131	-0.94	-112	-0.52	-0.38	-0.38	-0.72	-0.54	-0.76	-0.91	-109	-03	-0.88	-128	0.00
	eans	std. Error 9	lifference Di	•	0.11	0.11	0.12	0.11	0.11	0.11	0.12	0.13	0.11	0.Ħ	0.11	0.12	0.09	0.0	60:0	0.09	2010	0.11	20:0	0.10	0.11	0.1	0.11	0.10	0.11	0.13	0.0	60:0	0.10	0.12	000
	Equality of M	Mean	Difference	•	-0.26	-0.66	-0.73	-0.44	-0.13	-0.67	ę	-0.83	-0.57	-0.75	0.10 1	-102	-107	-0.10	0.16	-1.20	41-	-0.72	-102	-0.33	-0.77	-0.77	-0.51	-0.35	-0.54	-0.65	-0.30	-0.72	-0.68	-103 -1	ŧ
	t-test for	Significance -	Two-Sided p	Þ	0.02	0.00	0.00	0.0	0.24	0.00	0.00	0.00	0.0	0.0	0.38	0.00	0.0	0.18	0.07	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	140
		ž		•	166.38	165.55	166.35	1908.00	1908.00	1908.00	164.97	162.87	1908.00	1908.00	166.19	1308.00	162.20	1908.00	186.73	194.38	237.67	179.70	240.60	1908.00	164.51	164.07	163.72	1908.00	1908.00	1908.00	180.06	162.47	160.57	162.46	4000.000
		-		•	-2.34	-5.39	-6.24	-3.83	81 1-1	-6.13	-8.43	-6.60	-5.02	-6.75	8.0 9	-9.83 8.9	-11.59	-13 81-	181	-12.88	-15.76	-6.49	-13.61	-3.41	-7.15	-7.00	-4.65	-3.49	-4.91	5.10	-9.08	-7.59	. 9	-8.27	110
		- ueuel.	5	•	131	129	136	1.26	1.21	1.28	140	1.48	53 133	138	131	130	108	0.86	1.02	104	0.79	1.27	0.80	1.20	1.26	1.28	128	123	133	1.43	113	Ħ	121	1.46	
: T-Tests		- uenel.	Mean	•	2.25	2.66	2.93	2.87	2.47	2.84	3.18	301 301	30	3.19	2.13	3.62	2.73	166	2.02	4.01	4.62	381	4.58	2.09	2.77	2.75	2.48	2.47	277	3.40	3.65	2.64	2.68	3.18	7
amples Test	òtatistics	u - ueue		•	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	414
ependent Si	Jescriptive S	ther GISF	eqions -	⊾ •	122	118	1.27	133	129	1.27	1.26	1.26	130	1.29	122	135	0.31	0.88	व	1.45	1.46	1.49	150	E	1.12	113	11	115	1.28	1.49	133	0.94	0.97	123	A 4 4
pul		ther GISF ID	eqions - 1	Mean	139	200	2.20	243	233	2.17	217	2.18	2.44	2.44	203	2.60	166	156	2.18	2.82	3.46	3.09	3.56	1.76	2.01	139	1.97	2.12	223	2.74	2.75	1.92	201	2.16	1 20
		Jihar GISF O	eqions 1	►	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	1764	100
	r Equality of Variances	Basult		4	Equal variances not assumed	Equal variances not assumed	Equal variances not assumed	Equal variances assumed	Equal variances assumed	Equal variances assumed	Equal variances not assumed	Equal variances not assumed	Equal variances assumed	Equal variances assumed	Equal variances not assumed	Equal variances assumed	Equal variances not assumed	Equal variances assumed	Equal variances not assumed	Equal variances not assumed	Equal variances not assumed	Equal variances not assumed	Equal variances not assumed	Equal variances assumed	Equal variances not assumed	Equal variances not assumed	Equal variances not assumed	Equal variances assumed	Equal variances assumed	Equal variances assumed	Equal variances not assumed	Equal variances not assumed	Equal variances not assumed	Equal variances not assumed	-
	ne's Test fo	į	ħ i	•	0.011	0.00	0.03	0.16	0.20	0.351	0.00	0.00	0.321	0.10	0.04	0.20	0.00	0.44 E	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0:07	0.07	0.31	0.01	0.00	0.00	0.00	0101
	Leve			•	5.93	12.38	4.89	1.96	163	0.88	10.33	19.62	ē	2.64	4.09	168	13.42	0.58	31.49	46.10	179.65	12.61	185.02	2.71	14.75	15.87	13.77	3.27	3.31	104	7.30	19.56	31.27	21.17	000
		Statements		1 ×	B1Girls and boys are	B2 Female students i	B3 Women in STEM re	B4 It is equally difficul	B5 Being promoted o	B6 Women in STEM g	CD1 Women in STEM	CD2 Women in STEM	CD3 Women in STEM	CD4 Women in STEM	CD5 Women in STEM	CD6 Women in STEM	E11 believe things will	E2 It is orucial to have	E3 It is appropriate to	F1In a relative sense,	F2 Primary breadwinn	F3 Women are born to	F4 In order to maintair	F51believe gender ed	G1 Women are equal	G2 Women equally re	G3 The strictness, ob	G4 Dealing with funds	G5 Women receive th	G6 Marriage, pregnar	G7 Female students i	H1On balance, my S ⁷	H21am considered by	H3 I have not been pe	114 (11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

GISE Report 2022

©2022 INWES & KWSE

Taiwan vs. all other regions

					_	ndependent	Samples Te.	st: T-Tests									
	Ľ	vene's Test	t for Equality of Variances			Descriptive	Statistics					t-test fo	or Equality of	Means			Mann-
Statements	Ŀ	Sig	Result	Other GISE	Other GISE (Other GISE	Taiwan - n	Taivan -	Taivan -	-	Þ	Significan	Mean	Std. Error	95% C.I. of	95% C.L. of	Asvmp.
				regions	regions -	regions -		Mean	8 			ce - Two-	Difference	Difference	Differenco-	Differenco-	Sig. (2-
4		•	4	•	Mean 🔻	× SD	•	•	•	•	*	Sided 7	*	4	Lover 🔻	Upper 🎽	tailed] 🍸
B1Girls and boys are	9.29	0.00	Equal variances not assumed	1848	2.02	1.24	62	158	0.80	4.20	71.15	0.00	0.44	0.11	0.23	0.65	0.02
B2 Female students ir	7.74	0.01	Equal variances not assumed	1848	2.06	1.21	8	192	0.95	11	67.85	0.27	0.14	0.12	-01 1	0.38	0.84
B3 Women in STEM re	7.26	0.01	Equal variances not assumed	1848	2.26	129	3	2.18	106	0.61	67.20	0.55	0.08	0.14	-0.19	0.36	0.39
B4 It is equally difficult	8.51	0.00	Equal variances not assumed	1848	2.48	1.34	63	2.21	109	187	67.32	0:07	0.27	0.14	-0.02	0.55	0.21
B5 Being promoted or	105	0:30	Equal variances assumed	1848	2.35	123	63	2.26	1.21	0.54	1908.00	0.59	0.09	0.17	-0.24	0.42	0.69
B6 Women in STEM g	2.45	0.12	Equal variances assumed	1848	2.22	129	63	221	1.15	0.08	1908.00	0.94	0.01	0.17	-0.31	0.34	0.75
CD1 Women in STEMI	5.07	0.02	Equal variances not assumed	1848	225	13	8	213	112	0.86	66.66	0.39	0.13	0.15	-0.17	0.42	0.74
CD2 Women in STEM	5.53	0.02	Equal variances not assumed	1848	225	130	63	211	13	0.94	66.50	0.35	0.14	0.15	-0.16	0.43	0.66
CD3 Women in STEM	2.67	0.10	Equal variances assumed	1848	249	132	ß	2.34	119	0.83	1308.00	0.37	0.15	0.17	9.ib	0.48	0:50
CD4 Women in STEM	3.38	00	Equal variances assumed	1848	250	132	8	2.39	118	0.66	1908.00	0.51	0,11	0.17	-0.22	0.44	0.67
CD5 Women in STEM	109	030	Equal variances assumed	1848	204	123	3	2.05	15	-0:07	1908.00	0.94	βġ	0.16	-0.32	0.30	0.66
CD6 Women in STEM	5.18	0.02	Equal variances not assumed	1848	267	137	63	2.38	123	-197	66.17	0.05	-0.31	0.16	-0.63	000	0.06
E11 believe things will I	0.82	0.37	Equal variances assumed	1848	1.74	0.97	8	1.87	0.91	-105	1908.00	0:30	-0-13	0.12	-0.37	0.11	0.13
E2 It is crucial to have	230	0.13	Equal variances assumed	1848	157	88	8	13	0.72	0.21	1908.00	0.84	0.02	0.11	-0.20	0.25	0.60
E3 It is appropriate to i	2.29	0.13	Equal variances assumed	1848	217	129	8	2.15	1,14	0.16	1908.00	0.87	0.03	0.17	-0.30	0.35	0.78
F1In a relative sense,	8 0	0.77	Equal variances assumed	1848	289	145	8	333	14 14	-2.64	1308.00	0.0	-0.50	0.19	98 (-)	-0 13	0.0
F2 Primary breadwinn	6.46	0.01	Equal variances not assumed	1848	3.54	1.46	8	384	131	82 i-	66.20	0.08	-030	0.17	-0.64	0.04	0.14
F3 Women are born to	69 19	<u>.</u>	Equal variances assumed	1848 1848	3.13	148	8	3.58	143	-2.36	1908.00	0.02	-0.45	0.19	9 89	80.Ö-	0.02
F4 In order to maintair	26.12	0.0	Equal variances not assumed	1848	361	148	8	4.24	11	4. H	67.76	0.00	-083	0.15	-0 -0 -0	-0.32	0.00
F5 Ibelieve gender ed	0.0	0.97	Equal variances assumed	1848	1.78	1.12	62	182	Ë	-0.26	1908.00	0.79	-0.04	0.14	-0.32	0.25	0.69
G1 Women are equal!	0.02	0.83	Equal variances assumed	1848	207	15	8	192	Ē	101	1908.00	0.31	0.15	0.15	₽.O	0.44	0.26
G2 Women equally re	115	0.28	Equal variances assumed	1848	2.05	1.16	8	182	106	153	1908.00	0.13	0.23	0.15	-0.06	0.52	0.12
G3 The strictness, ob	5.75	0.02	Equal variances not assumed	1848	203	1.14	8	5	0.82	4.59	69.05	0.00	0:20	0.11	0.28	0.71	, 001
G4 Dealing with funde	5.78	0.02	Equal variances not assumed	1848	2.16	1.16	63	168	0.92	4.04	61.69	0.00	0.48	0.12	0.24	0.72	, 001
G5 Women receive th	3.29	0.07	Equal variances assumed	1848	229	130	8	1.84	1.16	2.68	1908.00	0.01	0.45	0.17	0.12	0.77	0.00
G6 Marriage, pregnar	1.02	0.31	Equal variances assumed	1848	280	150	8	2.45	1,41	182	1908.00	0:07	0.35	0.19	-0.03	0.73	0.06
G7 Female students ii	0.39	0.53	Equal variances assumed	1848	281	1.34	3	3.29	1.26	-2.80	1908.00	0.01	-0.48	0.17	-0.82	-0.15	0.00
H1On balance, my S1	0.52	0.47	Equal variances assumed	1848	138	0.97	8	192	0.84	0.50	1308.00	0.62	0.06	0.13	9.i9	0.31	0.91
H21 am considered by	124	0.27	Equal variances assumed	1848 1848	205	8	8	226	₽	-157	1908.00	0.12	-0.20	0.13	-0.46	0.05	0.07
H3I have not been pe	5.38	0.01	Equal variances not assumed	1848 1848	224	129	8	135	8	217	67.53	0.03	0.29	0.13	0.02	0.56	0.14
H4 My family (partner (2.92	8 <u>0</u>	Equal variances assumed	1848 1848	161	89 80	8	150	0.74	0.33	1308.00	0.32	0.1	0,11	₽ P	0.34	0.49
H5 My current colleag	3.90	0.05	Equal variances not assumed	1848	182	101	8	<u>1</u>	0.80	2.70	67.59	0.01	0.28	0.10	0:02	0.49	0.03

143

©2022 INWES & KWSE

GISE Report 2022

CES	
Ē	
EN	
РР	

Europe vs. all other regions

					_	Idependent	Samples Te	st: T-Tests									
	Leve	ne's Test fi	or Equality of Variances			Descriptive	Statistics					t-test fo	r Equality of	Means			Mann-
Statements	L	ij	Result	Other GISE	Other GISE	Other GISE	European	European	European	~	-	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of	Mhitney U Asymp. Siq.
+				regions 👕	regions -	regions -	Union	Union	Union - Sn			Fro-Sided p	Difference	Difference	Difference -	Difference -	(2-tailed)
P1Cide and have an	20.40	000	Family and and and and	+ tot	Mean	- IS F	. 13	Mean	- 11 - 12		CE 47		-			obbei -	100 \
B2 Female students it	24.16	0.00	Equal variances not assumed Equal variances not assumed	1845	2.03	2 99	3 23	272	152	-985 -985	00.41 66.77		590-	0.19	101-	-032	
B3 Women in STEM re	8.26	0.00	Equal variances not assumed	1845	223	127	8	3.14	146	438	67.47	0.0	-0.91	0.18	-128	-0.55	100.>
B4 It is equally difficul	0.77	0.38	Equal variances assumed	1845	2.44	132	85	3.17	139	-4.35	1908.00	0.00	-0.73	0.17	-106	-0.40	<pre>/001</pre>
B5 Being promoted o	14.11	0.00	Equal variances not assumed	1845	231	127	8	3.29	1.55	-5.05	67.05	0.00	-0.38	0.19	-137	-0.59	100.>
B6 Women in STEM g	17.65	0.00	Equal variances not assumed	1845	2.19	1.26	8	3.26	1.56	-5.49	66.35	0.00	-108	0.20	-1.47	-0.68	100.>
CD1 Women in STEM	4.21	0.04	Equal variances not assumed	1845	222	1.29	8	3.15	141	-5.29	67.83	0.00	-0.94	0.18	-129	-0.58	(.001
CD2 Women in STEM	3.08	0.08	Equal variances assumed	1845	2.22	128	85	3.02	1.42	-4.91	1308.00	0.00	-0.80	0.16	Ħ.	-0.48	(.001
CD3 Women in STEM	3.34	0.07	Equal variances assumed	1845	2.46	130	8	3.15	1.48	-4.19	1908.00	0.00	-0.69	0.17	-102	-0.37	100.>
CD4 Women in STEM	3.61	0.06	Equal variances assumed	1845	2.47	130	85	3.15	1.48	-4.13	1908.00	0.00	-0.68	0.17	101-	-0.36	(.001
CD5 Women in STEM	1.28	0.26	Equal variances assumed	1845	202	122	8	263	126	-3.99	1308.00	0.00	-0.61	0.15	-0.92	-0.31	100.>
CD6 Women in STEM	2.75	0.10	Equal variances assumed	1845	2.66	137	8	3.26	1.25	-3.49	1908.00	0.00	-0.60	0.17	-0.94	-0.26	100.>
E11 believe things will	7.75	0.01	Equal variances not assumed	1845	1.73	0.95	85	223	118	-3.39	66.35	0.00	-0.50	0.15	-0.80	-0.21	(.001
E2 It is crucial to have	9.60	0.00	Equal variances not assumed	1845	1.58	0.88	8	1.34	0.69	2.73	71.57	0.01	0.24	0.09	0:02	0.42	0.02
E3 It is appropriate to	5.63	0.02	Equal variances not assumed	1845	2.16	1.28	85	2.42	1.46	-138	67.53	0.17	-0.25	0.18	-0.62	0.11	0.23
F1In a relative sense,	161	0.21	Equal variances assumed	1845	2.87	1.45	8	3.89	138	-5.59	1908.00	0.00	-102	0.18	-138	-0.66	.001
F2 Primary breadwinn	16.62	0.00	Equal variances not assumed	1845	3.52	146	8	4.32	1.25	-5.06	70.24	0.00	-0.80	0.16	-112	-0.49	100.5
F3 Women are born to	0.72	0.40	Equal variances assumed	1845	3.12	148	8	3.88	1.43	-4.07	1308.00	0.00	-0.76	0.19	-112	-0.39	(.001
F4 In order to maintair	11.61	0.00	Equal variances not assumed	1845	3.61	148	8	4.29	130	-4.14	70.07	0.00	-0.68	0.16	101-	-0.35	100.>
F51believe gender ed	0.18	0.67	Equal variances assumed	1845	1.79	112	8	183	1.27	113	1308.00	0.26	0.16	0.14	-0.12	0.44	0.02
G1Women are equal	28.19	0.00	Equal variances not assumed	1845	2.04	1.13	8	283	1.46	4.33	69.69	0.00	-0.79	0.18	-1.16	-0.43	, 001
G2 Women equally re	32.36	0.00	Equal variances not assumed	1845	2.02	1.13	8	288	151	-4.57	66.58	0.00	-0.86	0.19	-1.24	-0.49	.001
G3 The strictness, ob	34.70	0.00	Equal variances not assumed	1845	1.39	11	85	2.62	1.52	-3.29	66.44	0.00	-0.62	0.19	-100	-0.25	0.00
G4 Dealing with funde	23.78	0.00	Equal variances not assumed	1845	2.12	1.13	8	283	153	-3.71	66.51	0.00	-0.71	0.19	-109	-0.33	.001
G5 Women receive th	16.44	0.00	Equal variances not assumed	1845	2.24	127	85	3.20	1.57	-4.87	66.38	0.00	-0.36	0.20	-136	-0.57	.001
G6 Marriage, pregnar	10	0.32	Equal variances assumed	1845	2.77	1.49	8	3.37	1.57	-3.16	1908.00	0.00	-0.60	0.19	-0.97	-0.23	0.00
G7 Female students i	0.09	0.76	Equal variances assumed	1845	2.82	1.34	85	2.38	137	-0.39	1908.00	0.32	-0.17	0.17	-0.50	0.16	0.34
H10n balance, my S ⁷	168	0.19	Equal variances assumed	1845	1.97	0.97	8	2.17	105	-160	1908.00	0.11	-0.20	0.12	-0.44	0.04	0.14
H21 am considered by	116	0.28	Equal variances assumed	1845	206	10	8	209	106	-0.25	1908.00	0.80	-0.03	0.13	-0.28	0.22	0.87
H3Ihave not been pe	15.59	0.00	Equal variances not assumed	1845	2.22	127	8	2.72	1.57	-2.58	66.97	0.01	-0.51	0.20	-0.90	-0.11	0.02
H4 My family (partner	7.75	0.01	Equal variances not assumed	1845	161	0.87	8	1 <u>8</u>	117	-0.15	66.53	0.88	-0.02	0.15	-0.31	0.27	0.21
H5 My current collead	3.89	0.05	Equal variances not assumed	1845	18	9; 19	8	2.06	1.18	-1.78	67.22	0.08	-0.26	0.15	-0.56	80	0.0

©2022 INWES & KWSE

GISE Report 2022

South America vs. all other regions

					_	ndependent	Samples Te	st: T-Tests									
	Leven	ne's Test for	r Equality of Variances			Descriptive	• Statistics					t-test fo	r Equality of	Means			Mann- Utiteren II
Statements	Ŀ	Sig.	Result	Other GISE	Other GISE	Other GISE	South	South	South	-	÷	Significance -	Mean	Std. Error	95 X C.I. of	95% C.I. of	Asymp. Sig.
ţ,	•	•	4	regions	regions - Mean	regions - SD 🔻	America -	America - Mean 🔻	America - SD 🔻	•	•	ro-Sided p	Difference	Difference	Difference - Lover 🔻	Difference - Upper 🔻	(2-tailed)
B1Girls and boys are	15.24	0.00	Equal variances not assumed	1867	139	121	43	2.95	1.54	4.07	43.20	0.0	-0.96	0.24	-1.44	-0.49	<.001
B2 Female students in	6.89	0.01 E	Equal variances not assumed	1867	2.04	1.19	43	2.79	139	-3.53	43.43	0.0	-0.76	0.21	-119	-0.32	<.001
B3 Women in STEM re	3.78	0.05 E	Equal variances assumed	1867	2.24	1.27	43	3.26	143	-5.17	1908.00	0.00	-1.02	0.20	-141	-0.63	100.>
B4 It is equally difficult	5.85	0.02 E	Equal variances not assumed	1867	2.45	132	43	3.23	152	-3.34	43.46	0.00	-0.78	0.23	-126	-0.31	(001)
B5 Being promoted of	0.81	0.37 E	Equal variances assumed	1867	2.32	1.28	43	3.35	1.34	-5.21	1908.00	0.00	-1.03	0.20	-1.41	-0.64	(001)
B6 Women in STEM g	180	0.18	Equal variances assumed	1867	2.20	127	43	3.16	141	-4.83	1908.00	0.00	-0.96	0.20	-135	-0.58	(001)
CD1Women in STEMI	165	0.20 E	Equal variances assumed	1867	223	1.29	43	3.09	139	-4.32	1908.00	0.0	-0.86	0.20	-125	-0.47	(.001
CD2 Women in STEM	3.16	0.08 E	Equal variances assumed	1867	2.23	128	43	3.14	1.42	-4.60	1908.00	0.00	-0.91	0.20	-130	-0.52	<.001
CD3 Women in STEM	0.03	0.86 E	Equal variances assumed	1867	2.47	131	43	3.23	136	-3.78	1908.00	0.0	-0.76	0.20	-116	-0.37	(.001
CD4 Women in STEM	0.39	0.32 E	Equal variances assumed	1867	2.48	131	43	3.23	123	-3.74	1308.00	0.0	-0.75	0.20	-115	-0.36	100.>
CD5 Women in STEM	0.24	0.62 E	Equal variances assumed	1867	2.02	122	43	2.93	126	-4.87	1908.00	0.0	-0.91	0.19	-128	-0.55	001
CD6 Women in STEM	133	0.17 E	Equal variances assumed	1867	2.66	137	43	3.42	128	-3.59	1908.00	0.0	-0.76	0.21	-112	-0.34	(.001
E11 believe things will t	159	0.21 E	Equal variances assumed	1867	1.74	0.96	43	2.02	0.39	-132	1908.00	0.06	-0.28	0.15	-0.58	0:01	0.02
E2 It is crucial to have	0.02	0.89	Equal variances assumed	1867	157	0.88	43	1.49	0.38	0.63	1908.00	0.53	0.08	0.14	-0.18	0.35	0.24
E3 It is appropriate to i	4.31	0.04 E	Equal variances not assumed	1867	2.18	129	43	1.86	113	18	44.58	0.07	0.32	0.17	-0.03	0.67	0.13
F1In a relative sense,	2.64	0.10 E	Equal variances assumed	1867	288	1.44	43	4.23	132	6.10	1908.00	0.00	-1.36	0.22	621-	-0.92	<.001
F2 Primary breadwinn	7.55	0.01 E	Equal variances not assumed	1867	3.53	1.46	43	4.30	126	-3.95	44.61	0.0	-0.77	0.20	-117	-0.38	<.001
F3 Women are born to	3.22	0.07 E	Equal variances assumed	1867	3.12	148	43	4.07	137	4.16	1908.00	0.0	-0.95	0.23	-139	-0.50	(001)
F4 In order to maintair	12.38	0.00 E	Equal variances not assumed	1867	3.62	148	43	4.37	123	-3.94	44.82	0.00	-0.75	0.19	-1.14	-0.37	(.001
F51believe gender ed	3.89	0.05 E	Equal variances not assumed	1867	179	1.12	43	181	138	-0.14	43.26	0.89	-0.03	0.21	-0.46	0.40	0.43
G1 Women are equally	10.88	0.00	Equal variances not assumed	1867	2.05	1.14	43	2.74	138	-3.28	43.32	0.00	-0.70	0.21	-1.12	-0.27	(001)
G2 Women equally re	15.52	0.00	Equal variances not assumed	1867	2.02	1.14	43	2.98	1.46	-4.27	43.20	0.00	-0.95	0.22	-1.40	-0.50	(001)
G3 The strictness, ob	11.20	0.00 E	Equal variances not assumed	1867	139	1.12	43	2.88	138	-4.19	43.27	0.00	-0.89	0.21	-1.32	-0.46	(001)
G4 Dealing with funde	5.42	0.02	Equal variances not assumed	1867	2.13	1.15	43	2.74	135	-2.96	43.42	0.01	-0.61	0.21	-103	-0.19	0.00
G5 Women receive th	5.00	0.03 E	Equal variances not assumed	1867	2.25	128	43	3.30	1.49	-4.61	43.44	0.00	-1.05	0.23	-152	-0.59	(001)
G6 Marriage, pregnar	0.02	0.88	Equal variances assumed	1867	2.78	150	43	3.19	153	-1.74	1908.00	0.08	-0.40	0.23	-0.86	0.05	0.09
G7 Female students i	0.61	0.43 E	Equal variances assumed	1867	2.82	1.34	43	2.95	141	-0.65	1908.00	0.52	-0.13	0.21	-0.54	0.27	0.55
H1On balance, my S1	18	0.17 E	Equal variances assumed	1867	1.97	0.97	43	221	19	-157	1908.00	0.12	-0.24	0.15	-0.53	0.06	0.18
H21 am considered by	0.74	0.39 E	Equal variances assumed	1867	2.06	100	43	2.30	108	-160	1908.00	0.11	-0.25	0.15	-0.55	0.06	0.14
H3Ihave not been pe	0.82	0.37 E	Equal variances assumed	1867	222	128	43	2.70	135	-2.41	1908.00	0.02	-0.47	0.20	-0.86	-0.09	0.01
H4 My family Ipartner (358	0.06 E	Equal variances assumed	1867	1.60	0.87	43	1.98	1.18	-2.77	1908.00	0.01	-0.38	0.14	-0.64	0.Ħ	0.03
H5 My current collead	169	0.19 E	Equal variances assumed	1867	179	100	6	2.35	5	-3.60	1908.00	0.0	-0.56	0.15	-0.86	-0.25	100.>

145

©2022 INWES & KWSE

GISE Report 2022

CES	
Ĩ	
E	
AP	

B-6. By STEM Experience & Considering leaving STEM

In the tables below, any row in BLUE indicates where the p-value (the probability that the results occurred by chance) is very low, hence indicating the averages and standard deviations are not by chance (Alpha = 0.05).

assumes normality of the distribution of the variable to be compared together with homogeneity of the variance of this variable for each group. Alternative tests are displayed as appropriate. p-values reported in columns AF/AJ correspond to the test for either homogeneous or heterogeneous variances, based on the indication in column F. When both parametric (ANOVA/Welch) and non-parametric (Kruskal-Wallis) tests are significant, the parametric alternative should be reported. Both non-parametric and parametric tests should be significant Comparisons using Analysis of Variance (ANOVA) of responses by STEM cluster are shown. As is the case with t-tests, ANOVA to report a statistical difference ($p \le 0.05$)

Note: Respondents with missing values for STEM Experience/Considering leaving STEM are excluded from this analysis.

The following do not include late responses.

CES	
Ĩ	
Ä	
PP	
~	

Three-way comparison for STEM Experience

ruskal	Wallis		symp.	Sig ₹	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.87	0.05	0.00	0.00	0.00	0.00	0.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.26	0.00	0.97	0.00
<u> </u>	ity of		Sig	•	0.0	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.01	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00		
	t of Equal	s)	ÇĮ	•	547.71	560.16	549.01		547.79	546.69	510.60	519.23	536.01	542.18	526.70	551.34	504.75		604.13	567.98	621.38		628.27		518.63	517.35	526.42	536.95	539.10	552.70		525.68		524.24		
	obust Tes	Mean	튁	•	2	2	2		2	2	2	2	2	2	2	2	2		2	2	2		2		2	2	2	2	2	2		2		2		
	Welch (R		tatistic	Þ	8.26	10.02	29.31		5.64	22.33	74.35	54.96	35.42	33.12	19.21	83.79	57.66		5.06	73.40	79.58		70.65		56.58	43.28	18.57	11.51	26.59	59.62		12.29		32.57		
			Sig. S	F				0.01										0.84				0.00		0.22							0.00		0.12		0.91	0.00
			.	•				4.95										0.17				15.76		1.50							14.64		2.10		0.09	13.65
	NOVA		lean	⊾ ent				8.72										0.13				33.95		1.88							25.85		2.09		0.07	13.45
	A		đ	× ►	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
			SS	Þ	25.94	30.77	102.33	17.44	19.35	75.51	279.80	202.93	128.51	117.47	63.04	291.36	120.38	0.26	15.02	270.38	249.16	67.89	215.81	3.77	162.20	130.66	54.71	33.04	91.72	254.79	51.71	26.03	4.18	117.51	0.14	26.90
		<u>(</u>	ß	F	1.27	1.27	1.38	1.31	1.33	1.32	1.47	1.45 2	1.39	1.36	1.33	1.29	1.10	0.87	1.16	1.32 2	1.12	1.37	1.10 2	1.16	1.27	1.31	1.29	1.24	1.34	1.43 2	1.27	1.10	1.07	1.43	0.94	1.12
		rs (senic	lean	F	2.16	2.30	2.67	2.67	2.53	2.56	2.95	2.83	2.93	2.92	2.29	3.31	2.16	1.55	2.10	3.63	4.22	3.45	4.29	1.83	2.59	2.52	2.33	2.38	2.67	3.38	3.12	2.17	2.09	2.65	1.62	2.01
		21+ yea		•	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	343
st	stics	areer)	ß	•	1.29	1.16	1.27	1.29	1.36	1.34	1.42	1.40	1.40	1.38	1.35	1.44	1.11	0.85	1.17	1.47	1.32	1.44	1.35	1.17	1.25	1.26	1.20	1.23	1.40	1.57	1.33	1.04	1.05	1.37	0.86	1.06
ples Te	ive Stati	s (mid-ci	Aean	•	2.20	2.12	2.48	2.40	2.41	2.43	2.58	2.54	2.77	2.75	2.31	3.15	2.04	1.57	1.99	3.19	3.85	3.40	3.87	1.87	2.34	2.28	2.15	2.28	2.46	3.27	2.99	2.10	2.16	2.51	1.60	1.93
ent Sam	Descripti	-20 year	-	•	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274
lepende	-	or 11	ß	F	1.19	1.18	1.23	1.34	1.26	1.24	1.13	1.16	1.24	1.25	1.14	1.29	0.83	0.88	1.34	1.41	1.49	1.5	1.53	1.1	1.03	1.04	1.05	1.1	1.23	1.43	1.35	0.9	0.97	1.17	0.86	0.94
Ē		irs (early	lean	F	1.93	1.97	2.1	2.42	2.28	2.08	1.99	2.03	2.31	2.33	1.91	2.41	1.57	1.58	2.23	2.67	3.31	3.03	3.43	1.76	1.87	1.87	1.9	2.06	2.13	2.55	2.72	1.9	2.03	2.06	1.6	1.72
		0-10 yea	-	•	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272	1272
				•	ped	ned	med		ned	med	med	ned	med	med	med	ned	nmed		med	med	med		med		umed	ned	ned	ned	med	ned		umed		med		
	n Mean)		Ħ		not assi	not assi	not assi	assumed	not assi	not assi	not assi	i not assi	not assi	not assi	i not assi	i not assi	inot assi	assumed	not assi	not assi	not assi	assumed	not assi	assumed	not assi	not assi	not assi	not assi	i not assi	not assi	assumed	i not assi	assumed	not assi	assumed	assumed
	(based o		Res		ariances	ariances	ariances	ariances a	ariances	ariances	ariances	ariances	ariances	ariances	ariances	ariances	ariances	ariances a	ariances	ariances	ariances	ariances a	ariances	ariances a	ariances	ariances	ariances	ariances	ariances	ariances	ariances a	ariances	ariances a	ariances	ariances a	ariances a
	riances				Equal v	Equal v	Equal v	Equal va	Equal v	Equal v	Equal v	Equal v	Equal v	Equal v	Equal v	Equal v	Equal v	Equal va	Equal v	Equal v	Equal v	Equal va	Equal v	Equal va	Equal v	Equal v	Equal v	Equal v	Equal v	Equal v	Equal va	Equal v	Equal va	Equal v	Equal va	Equal va
	eity of Va		Sig.	•	0.0	0.00	0.0	0.62	0.00	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.51	0.0	0.04	0.0	0.0	0.0	0.20	0.00	0.00	0.00	0.00	0.0	0.00	0.18	0.00	0.0	0.00	0.31	0.14
	omogene		đ	•	188	188	188	188	188	188	188	188	188	188	188	188	188	188(188(188	188	188(188	188(188(188(188	188	188(188	1886	188	188(188	188	1886
	sts of H		£	•									1			_		2				t		6				2			2	8	5	5	~	0
	Te		Levene	Statis1 V	6.60	6.40	14.05	0.48	7.16	11.37	67.35	49.13	13.14	7.22	28.81	8.9	23.86	0.67	13.45	3.17	55.72	2.44	88.96	1.55	45.27	46.93	28.13	14.85	18.33	7.28	1.72	11.05	2.46	41.15	1.16	1.95
			its I	•	Noys are 6	idents in	STEM rei	r difficult t	noted or I	STEM ge	n STEM t	n STEM t	n STEM t	n STEM t	n STEM t	n STEM t	ings will t	to have \$	priate to it	e sense,	eadwinne	e born to	maintain	ender equ	e equally	nually rec	ress, obje	th funder.	ceive the	pregnanc	udents in	e, my STI	lered by	been per	partner /f	colleagu
			Stateme		Girls and t	Female stu	Women in	t is equally	Being pron	Women in	1 Women i	2 Women i	3 Women i	4 Women i	5 Women i	5 Women i	believe th	t is crucial	t is approp	n a relativ	Primary br	Women an	n order to	believe gt	Women ar	Women ed	The strictn	Dealing wi	Women re	Marriage,	Female sti	On balance	am consid	have not	My family /	My current
					B1 Gi	B2 Fe	B3 W	B4 It i	B5 Be	B6 W	CD1	CD2 \	CD3 \	CD4 \	CD5 \	CD6 \	E1 I b	E2 It i	E3 It i	F1 In	F2 Pr	F3 W	F4 In	F51b	G1 W	G2 W	G3 T}	G4 D(G5 W	G6 M	G7 F6	H1 Or	H2 I a	H3 I h	H4 M	L

GISE Report 2022

©2022 INWES & KWSE

CES	
Ī	
PE	
AP	

Early career X Gender

						Independ	tent Sample	es Test: T-Te	sts								
	Lever	ne's Test fo	r Equality of Variances			Descriptive	Statistics					t-test fo	r Equality of	Means			Mann- Whitnev U
Statements	L	Sig.	Result	Female/non-I	-emale/non-	Female/non-	Male - n	Male - Mean	Male - SD		đ	Significance -	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig. (2-
[binary - n	binary -	binary - SD						Two-Sided p	Difference	Difference	Difference -	Difference -	tailed)
_ ▲	+	•	4	•	Mean 🔻	•	•	•	•	•	•	•	•	•	Lower 🔻	Upper 🔻	•
B1 Girls and	63.76	0.00	Equal variances not assumed	509	2.23	1.34	763	1.73	1.04	71.7	898.32	0.00	0.50	0.07	0.37	0.64	0.00
B2 Female st	23.50	0.00	Equal variances not assumed	509	2.22	1.26	763	1.81	1.10	6.04	984.58	0.00	0.41	0.07	0.28	0.55	0.00
B3 Women in	44.83	0.00	Equal variances not assumed	509	2.45	1.31	763	1.87	1.12	8.13	970.48	0.00	0.58	0.07	0.44	0.72	0.00
B4 It is equal	0.02	0.00	Equal variances assumed	509	2.47	1.33	763	2.39	1.35	1.01	1270.00	0.31	0.08	0.08	-0.07	0.23	0.23
B5 Being pro	24.88	0.00	Equal variances not assumed	509	2.47	1.33	763	2.14	1.18	4.51	990.68	0.00	0.33	0.07	0.19	0.47	0.00
B6 Women in	45.58	0.00	Equal variances not assumed	509	2.39	1.34	763	1.88	1.12	7.11	952.96	0.00	0.51	0.07	0.37	0.65	0.00
CD1 Women	37.76	0.00	Equal variances not assumed	509	2.38	1.19	763	1.74	1.01	9.92	965.66	0.0	0.64	0.06	0.51	0.76	0.00
CD2 Women	36.70	0.00	Equal variances not assumed	509	2.39	1.23	763	1.79	1.05	8.97	968.80	0.00	09.0	0.07	0.47	0.73	0.00
CD3 Women	38.62	0.00	Equal variances not assumed	509	2.64	1.32	763	2.09	1.13	7.68	973.97	0.0	0.55	0.07	0.41	0.69	0.0
CD4 Women	31.10	0.00	Equal variances not assumed	509	2.66	1.31	763	2.10	1.15	7.86	991.29	0.00	0.56	0.07	0.42	0.70	0.00
CD5 Women	11.72	0.00	Equal variances not assumed	509	2.14	1.20	763	1.76	1.07	5.69	1003.68	0.0	0.38	0.07	0.25	0.50	0.0
CD6 Women	5.78	0.02	Equal variances not assumed	509	2.69	1.27	763	2.22	1.27	6.45	1088.43	0.0	0.47	0.07	0.33	0.61	0.0
E1 I believe t	32.05	0.00	Equal variances not assumed	509	1.75	0.92	763	1.46	0.75	5.92	929.31	0.00	0.29	0.05	0.19	0.39	0.00
E2 It is crucia	22.11	00.0	Equal variances not assumed	509	1.46	0.79	763	1.66	0.93	-4.09	1197.26	0.00	-0.20	0.05	-0.29	-0.10	0.00
E3 It is appro	38.15	00.0	Equal variances not assumed	509	2.05	1.21	763	2.36	1.41	-4.19	1192.34	0.00	-0.31	0.07	-0.45	-0.16	0.00
F1 In a relativ	25.64	00.00	Equal variances not assumed	509	2.97	1.50	763	2.47	1.32	6.13	988.69	0.00	0.50	0.08	0.34	0.66	0.00
F2 Primary b	5.94	0.01	Equal variances not assumed	509	3.64	1.49	763	3.09	1.45	6.51	1070.22	0.00	0.55	0.08	0.38	0.72	0.00
F3 Women a	9.05	0.00	Equal variances not assumed	509	3.36	1.52	763	2.80	1.44	6.51	1050.48	0.00	0.55	0.09	0.39	0.72	0.00
F4 In order to	3.05	0.08	Equal variances assumed	509	3.71	1.48	763	3.25	1.54	5.33	1270.00	0.0	0.46	0.09	0.29	0.63	0.0
F5 I believe g	1.86	0.17	Equal variances assumed	509	1.68	1.07	763	1.81	1.12	-2.13	1270.00	0.03	-0.13	0.06	-0.26	-0.01	0.01
G1 Women a	53.03	0.00	Equal variances not assumed	509	2.17	1.17	763	1.67	0.87	8.33	875.59	0.00	0.50	0.06	0.39	0.62	0.00
G2 Women e	51.91	0.00	Equal variances not assumed	509	2.18	1.17	763	1.66	0.88	8.52	881.73	0.0	0.52	0.06	0.40	0.64	0.00
G3 The strict	24.61	0.00	Equal variances not assumed	509	2.15	1.16	763	1.74	0.94	6.63	931.07	0.00	0.41	0.06	0.29	0.53	0.00
G4 Dealing w	16.72	00.0	Equal variances not assumed	509	2.31	1.15	763	1.89	1.03	6.56	1004.83	0.00	0.42	0.06	0.29	0.54	0.00
G5 Women n	81.01	00.0	Equal variances not assumed	509	2.52	1.35	763	1.86	1.07	9.35	915.85	0.00	0.66	0.07	0.53	0.80	0.00
G6 Marriage,	34.41	00.0	Equal variances not assumed	509	2.93	1.52	763	2.30	1.31	7.66	975.73	0.00	0.63	0.08	0.47	0.79	0.00
G7 Female s	1.87	0.17	Equal variances assumed	509	2.70	1.31	763	2.73	1.37	-0.35	1270.00	0.72	-0.03	0.08	-0.18	0.12	0.81
H1 On baland	1.57	0.21	Equal variances assumed	509	1.99	0.98	763	1.83	0.84	3.11	1270.00	0.00	0.16	0.05	0.06	0.26	0.01
H2 I am cons	2.13	0.14	Equal variances assumed	200	2.11	0.99	763	1.98	0.95	2.30	1270.00	0.02	0.13	0.06	0.02	0.24	0.02
H3 I have not	32.90	00.0	Equal variances not assumed	509	2.36	1.26	763	1.86	1.06	7.41	958.58	0.00	0.50	0.07	0.37	0.64	0.00
H4 My family	5.12	0.02	Equal variances not assumed	509	1.61	0.93	763	1.59	0.81	0.46	984.14	0.65	0.02	0.05	-0.08	0.12	0.58
H5 My curren	0.99	0.32	Equal variances assumed	509	1.82	0.97	763	1.66	0.91	2.90	1270.00	0.00	0.16	0.05	0.05	0.26	0.00

©2022 INWES & KWSE

GISE Report 2022

CES	
Ē	
EN	
РР	

Midcareer X Gender

						Independ	ient Sample	is Test: T-T	ests								
	Leven	ne's Test for	Equality of Variances			Descriptive	Statistics					t-test for	Equality of I	Neans			Mann-
Ctatomonte			Decut	[omelo/no	Lomolo/no	Comololno	a olow	Mala	Mala CD		ų	lanificance	Moon	Ctd Error	OKW C L of	O.E.C. D.F	wnimey u
ordielileillo	L	-fic	VCSUIL	n-binary - n	n-binary -	n-binary -	III - AIDM	Mean	Male - 30	_	5	Two-Sided p	Difference	Difference	Difference -	Difference -	tsymp. Jug. (2-tailed)
±.*	•	•	•	•	Mean	SD 🗸	•	•	•	•	•	•	Þ	•	Lower V	Upper 🔻	•
B1 Girls and	12.97	0.00	Equal variances not assumed	11.	1 2.57	1.30	103	1.58	1.01	6:99	253.95	0.00	0.98	0.14	0.71	1.26	0.00
B2 Female st	18.06	0.00	Equal variances not assumed	11	1 2.40	1.22	103	1.67	0.89	5.70	261.69	0.00	0.73	0.13	0.48	0.98	0.0
B3 Women ir	8.32	0.00	Equal variances not assumed	11	1 2.87	1.24	103	1.84	1.05	7.30	242.83	0.00	1.02	0.14	0.75	1.30	0.00
B4 It is equal	5.59	0.02	Equal variances not assumed	171	1 2.59	1.31	103	2.09	1.19	3.27	231.33	0.00	0.50	0.15	0.20	0.81	0.0
B5 Being proi	7.38	0.01	Equal variances not assumed	17	1 2.55	1.40	103	2.17	1.26	2.29	233.68	0.02	0.37	0.16	0.05	0.70	0.04
B6 Women ir	24.26	0.00	Equal variances not assumed	17	1 2.78	1.39	103	1.83	1.02	6.49	261.23	0.00	0.95	0.15	0.66	1.24	0.0
CD1 Women	14.69	00.00	Equal variances not assumed	17	1 2.99	1.42	103	1.89	1.14	70.7	250.50	0.00	1.10	0.16	0.79	1.41	0.0
CD2 Women	6.37	0.01	Equal variances not assumed	17	1 2.92	1.37	103	1.90	1.20	6.47	236.93	0.00	1.02	0.16	0.71	1.33	0.0
CD3 Women	13.83	0.00	Equal variances not assumed	17	3.12	1.41	103	2.17	1.17	6.02	245.77	0.00	0.95	0.16	0.64	1.26	0.0
CD4 Women	6.33	0.01	Equal variances not assumed	17	3.11	1.36	103	2.17	1.21	5.95	235.80	0.00	0.94	0.16	0.63	1.25	0.0
CD5 Women	8.71	00.00	Equal variances not assumed	17	1 2.61	1.35	103	1.80	1.20	5.21	235.16	0.00	0.82	0.16	0.51	1.13	0.0
CD6 Women	00.0	0.95	Equal variances assumed	.21	3.61	1.30	103	2.39	1.34	7.47	272.00	0.00	1.23	0.16	0:00	1.55	0.00
E11 believe th	4.19	0.04	Equal variances not assumed	17	1 2.28	1.12	103	1.63	0.96	5.10	240.48	0.00	0.65	0.13	0.40	0.90	0.00
E2 It is crucia	12.80	0.00	Equal variances not assumed	171	1 1.46	0.75	103	1.74	0.98	-2.46	172.94	0.01	-0.28	0.11	-0.50	-0.05	0.03
E3 It is appro	24.50	0.00	Equal variances not assumed	17	1.81	1.00	103	2.30	1.35	-3.22	169.77	0.00	-0.49	0.15	-0.80	-0.19	0.01
F1 In a relativ	0.79	0.38	Equal variances assumed	11.	3.50	1.43	103	2.66	1.38	4.79	272.00	0.00	0.84	0.18	0.50	1.19	0.00
F2 Primary bi	13.41	0.00	Equal variances not assumed	17	1 4.12	1.18	103	3.42	1.42	4.20	185.79	0.00	0.70	0.17	0.37	1.03	0.0
F3 Women ar	0.01	0.92	Equal variances assumed	17	3.71	1.37	103	2.87	1.41	4.86	272.00	0.00	0.84	0.17	0.50	1.18	0.00
F4 In order to	24.95	0.00	Equal variances not assumed	17	1 4.20	1.13	103	3.31	1.50	5.24	171.66	0.00	0.89	0.17	0.56	1.23	0.00
F51 believe g	1.77	0.18	Equal variances assumed	17	1.90	1.20	103	1.83	1.11	0.52	272.00	0.61	0.08	0.15	-0.21	0.36	0.86
G1 Women a	23.66	0.00	Equal variances not assumed	17	1 2.74	1.26	103	1.66	0.90	8.25	263.99	0.00	1.08	0.13	0.82	1.34	0.00
G2 Women e	48.32	0.00	Equal variances not assumed	17	1 2.70	1.31	103	1.59	0.79	8.77	272.00	0.00	1.11	0.13	0.86	1.36	0.00
G3 The strict	43.34	0.00	Equal variances not assumed	17	1 2.49	1.27	103	1.57	0.79	7.38	271.77	0.00	0.92	0.12	0.67	1.16	0.00
G4 Dealing w	19.65	0.00	Equal variances not assumed	11.	1 2.64	1.25	103	1.69	0.94	7.16	259.21	0.00	0.95	0.13	0.69	1.22	0.00
G5 Women re	35.22	0.00	Equal variances not assumed	11	1 2.89	1.41	103	1.75	1.03	7.75	262.64	0.00	1.15	0.15	0.86	1.44	0.00
G6 Marriage,	0.90	0.34	Equal variances assumed	17	3.84	1.39	103	2.33	1.40	8.68	272.00	0.00	1.51	0.17	1.16	1.85	0.0
G7 Female st	7.12	0.01	Equal variances not assumed	171	3.08	1.24	103	2.84	1.45	1.35	189.39	0.18	0.23	0.17	-0.11	0.57	0.17
H1 On baland	7.86	0.01	Equal variances not assumed	17	1 2.31	1.10	103	1.76	0.85	4.67	255.86	0.00	0.55	0.12	0.32	0.79	0.00
H2 I am cons	0.31	0.58	Equal variances assumed	17	1 2.29	1.07	103	1.95	0.97	2.59	272.00	0.01	0.34	0.13	0.08	0.59	0.01
H3 I have not	31.18	0.00	Equal variances not assumed	17	3.01	1.36	103	1.69	0.92	9.54	268.47	0.00	1.32	0.14	1.04	1.59	0.00
H4 My family	4.06	0.04	Equal variances not assumed	17	1.67	0.95	103	1.49	0.70	1.82	260.84	0.07	0.18	0.10	-0.02	0.38	0.21
H5 My curren	4.22	0.04	Equal variances not assumed	.2	1 2.12	1.13	103	1.61	0.84	4.26	260.08	0.00	0.51	0.12	0.27	0.75	0.00

GISE Report 2022

©2022 INWES & KWSE

Seniors X Gender

						Independ	ent Sample	es Test: T-T	ests								
	Leve	ne's Test for	Equality of Variances			Descriptive	Statistics					t-test fo	r Equality of I	Means			Mann- Whitnev U
Statements	u.	Sig.	Result	Female/non-	Female/non-	Female/non-	Male - n	Male -	Male - SD	-	đ	Significance	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
4	•	►	•	binary -	binary	binary - sn	•	Mean	•	►	•	- Two-Sided	Differen	Differen	Difference Lowel	Difference Upper	(2-tailer ¹¹
B1 Girls and	1.23	0.27	Equal variances assumed	253	2.28	1.29	8	1.89	1.18	2.40	341.00	0.02	0.37	0.15	0.07	0.68	0.01
B2 Female s	2.61	0.11	Equal variances assumed	253	2.41	1.27	8	1.99	1.22	2.74	341.00	0.01	0.42	0.15	0.12	0.73	0.00
B3 Women ii	10.94	0.0	Equal variances not assumed	253	2.90	1.37	8	2.03	1.20	5.63	177.14	0.00	0.86	0.15	0.56	1.17	0.00
B4 It is equa	1.16	0.28	Equal variances assumed	253	2.77	1.28	8	2.39	1.35	2.36	341.00	0.02	0.38	0.16	0.06	0.69	0.01
B5 Being pro	0.24	0.63	Equal variances assumed	253	2.63	1.33	8	2.27	1.31	2.23	341.00	0.03	0.36	0.16	0.04	0.68	0.02
B8 Women ii	3.14	0.08	Equal variances assumed	253	2.71	1.32	8	2.16	1.24	3.45	341.00	0.00	0.55	0.16	0.24	0.87	0.00
CD1 Women	12.87	0.0	Equal variances not assumed	253	3.32	1.38	8	1.91	1.22	9.04	174.86	0.00	1.41	0.16	1.10	1.71	0.00
CD2 Women	10.48	0.0	Equal variances not assumed	253	3.18	1.37	8	1.87	1.21	8.52	175.35	0.00	1.31	0.15	1.01	1.61	0.00
CD3 Women	1.74	0.19	Equal variances assumed	253	3.17	1.36	8	2.24	1.26	5.66	341.00	0.00	0.93	0.16	0.60	1.25	0.00
CD4 Women	1.46	0.23	Equal variances assumed	253	3.15	1.32	8	2.28	1.26	5.48	341.00	0.00	0.88	0.16	0.56	1.19	0.00
CD5 Women	16.78	0.0	Equal variances not assumed	253	2.48	1.36	8	1.78	1.09	4.89	194.70	0.00	0.70	0.14	0.42	0.98	0.00
CD6 Women	8.16	0.0	Equal variances not assumed	253	3.57	1.16	8	2.60	1.36	5.99	137.33	0.00	0.97	0.16	0.65	1.28	0.00
E11 believe	11.33	0.00	Equal variances not assumed	253	2.38	1.09	90	1.53	0.82	7.87	207.01	0.00	0.85	0.11	0.63	1.07	0.00
E2 It is orucis	8.35	0.00	Equal variances not assumed	253	1.51	0.79	90	1.68	1.07	-1.40	125.28	0.17	-0.17	0.12	-0.42	0.07	0.42
E3 It is appro	16.08	0.0	Equal variances not assumed	253	1.96	1.05	90	2.52	1.34	-3.62	129.87	0.00	-0.57	0.16	-0.87	-0.26	0.00
F1 In a relati	0.37	0.54	Equal variances assumed	253	3.82	1.28	8	3.08	1.33	4.73	341.00	0.00	0.74	0.16	0.44	1.05	0.00
F2 Primary b	29.87	0.0	Equal variances not assumed	253	4.42	0.97	8	3.66	1.32	5.04	124.79	0.00	0.76	0.15	0.48	1.06	0.00
F3 Women a	0.08	0.78	Equal variances assumed	253	3.64	1.33	8	2.93	1.33	4.32	341.00	0.00	0.71	0.16	0.39	1.03	0.00
F4 In order to	16.20	0.0	Equal variances not assumed	253	4.48	0.98	8	3.81	1.26	4.44	128.97	0.00	0.65	0.15	0.36	0.94	0.00
F5 I believe	0.51	0.47	Equal variances assumed	253	1.80	1.14	8	1.90	1.22	-0.68	341.00	0.49	-0.10	0.14	-0.38	0.18	0.55
G1 Women a	17.28	0.00	Equal variances not assumed	253	2.85	1.25	90	1.86	1.00	7.52	194.42	0.00	0.99	0.13	0.73	1.25	0.00
G2 Women e	20.68	0.0	Equal variances not assumed	253	2.77	1.31	8	1.80	1.02	71.7	200.56	0.00	0.97	0.14	0.70	1.24	0.00
G3 The strict	14.49	0.0	Equal variances not assumed	253	2.52	1.31	8	1.79	1.08	5.23	188.79	0.00	0.73	0.14	0.48	1.01	0.00
G4 Dealing v	9.69	0.0	Equal variances not assumed	253	2.57	1.25	8	1.82	1.03	5.59	187.71	0.00	0.75	0.13	0.49	1.02	0.00
G5 Women n	10.25	0.0	Equal variances not assumed	253	2.92	1.31	8	1.97	1.15	6.52	177.82	0.00	0.95	0.15	0.67	1.24	0.00
G8 Marriage	0.95	0.33	Equal variances assumed	253	3.52	1.42	8	2.99	1.39	3.05	341.00	0.00	0.53	0.17	0.19	0.87	0.00
G7 Female s	0.01	0.93	Equal variances assumed	253	3.14	1.28	8	3.06	1.29	0.58	341.00	0.58	0.09	0.16	-0.22	0.39	0.55
H1 On balan	1.82	0.18	Equal variances assumed	253	2.30	1.11	8	1.81	0.98	3.73	341.00	0.00	0.49	0.13	0.23	0.75	0.00
H2 I am cons	1.95	0.16	Equal variances assumed	253	2.16	1.10	8	1.89	0.97	2.05	341.00	0.04	0.27	0.13	0.01	0.53	0.05
H3 I have no	31.04	0.0	Equal variances not assumed	253	3.02	1.39	8	1.59	0.93	10.89	233.34	0.00	1.43	0.13	1.18	1.69	0.0
H4 My family	5.54	0.02	Equal variances not assumed	253	1.68	6.0	8	1.47	0.77	2.05	200.94	0.04	0.21	0.10	0.01	0.41	0.12
H5 My ourrer	9.85	0.00	Equal variances not assumed	253	2.19	1.16	90	1.50	0.84	6.03	215.48	0.00	0.69	0.11	0.46	0.92	0.00

©2022 INWES & KWSE

GISE Report 2022

Gender X Considering leaving STEM

The following provides the results of comparing responses to the question in Section A: 2.4 (c) - Have you left STEM or considered leaving STEM permanently?

					Descriptive	Statistics			
Statement Choices		Female/non-binary - n	Female/non-binary - Col. %	Female/non-binary - 95% C.I. Col. % -	Female/non-binary - 95% C.I. Col. % -	Male - n	Male - Col. %	Male - 95% C.I. Col. % - Lower	Male - 95% C.I. Col. % - Upper
•	F	•	•		Upper	Þ	+	•	Þ
2.4 (c) - H 1 Yes		143	15.16%	12.98%	17.56%	98	10.14%	8.36%	12.17%
2.4 (c) - H2 Maybe		134	14.21%	12.09%	16.55%	244	25.26%	22.60%	28.07%
2.4 (c) - H 3 No		666	70.63%	67.66%	73.47%	624	64.60%	61.54%	67.56%
2.4 (c) - H Total		943	100.00%	NA	NA	996	100.00%	NA	NA
Note: Respondents	with	missing values to	"2 4 (c) - Have vo	vu left STFM or co	unsidered leaving S	TFM permanent	lv?" are excluded	d from this analysis	

2
ded
XCIU
are e
Jent
rmai
N pe
E
bui
leav
ered
JSIG
r co
Ň
S
lei
e you
Have you
(с) - наvе уои
"2.4 (c) - Have you
s to "2.4 (c) - Have you
alues to "2.4 (c) - Have you
ng values to "2.4 (c) - Have you
missing values to "2.4 (c) - Have you
with missing values to "2.4 (c) - Наve you
ents with missing values to "2.4 (с) - наve you
ondents with missing values to "2.4 (c) - Have you
tespondents with missing values to "2.4 (c) - Have you

ement Paramete	Ls	ő	ender
(c) - H Chi-square			41.51
(c) - H df			2
(c) - H Sig.			-000

Square Test of Independence is < 0.05, there is an association between Gender and at least of the levels of the variable "having left or considering leaving STEM". (Alpha = 0.05)

Compa	risons of Colurr	in Proportions (A	dpha = 0.05)
Statement	Choices	Gender: 1 Female or non-binary (A)	Gender: 2 Male (B)
2.4 (c) - H	1 Yes	. 8	
2.4 (c) - H	2 Maybe		A
2.4 (c) - H	3 No	В	

Within a question: Each gender is assigned a letter between A and B. Results are based on two-sided tests assuming equal variances.

For each significant pair, the letter of the smaller category appears in the category with the larger mean.

B-7. By global indices (HDI and GII)

As is the case with t-tests, ANOVA assumes normality of the distribution of the variable to be compared together with homogeneity of correspond to the test for either homogeneous or heterogeneous variances, based on the indication in column F. When both parametric (ANOVA/Welch) and non-parametric (Kruskal-Wallis) tests are significant, the parametric alternative should be reported. Both nonthe variance of this variable for each group. Alternative tests are displayed as appropriate. p-values reported in columns AF/AJ Comparisons by HDI and GII using Analysis of Variance (ANOVA) of responses by HDI groupings are shown in the two tables below parametric and parametric tests should be significant to report a statistical difference ($p \le 0.05$).

The following do not include late responses.

Across HDI Groups - overall

									Indeper	ndent San	ples Test													Krus	skal-
	-	Tests of Ho	mogenei	ty of Vari	ances (based on Mean)				De	scriptive S	tatistics							ANOVA			Welch (Robus	st Test of Equ	ality of Mean	(a	s
						Very High			High		M	adium		Low											
Statements	Levene Statist V	ff ▶	df2	Sig.	Result	n Mean	SD 🔻	-	Mean	SD 🔹	-	fean SI	-	Mean	S	SS	đ	Mean Contar V	< ۲	Sig. St	tatistic o	₽ ¥	2 Si	Asyl	
B1 Girls and boys are (23.39	~	1898	0.00	Equal variances not assumed	512 2.35	1.32	1	244 1	46 12	48 1.8	4 1.12	8	2.09	1.44						21.51		68.86	5 <mark>8</mark>	0.0
B2 Female students in	7.38	3	1898	0.00	Equal variances not assumed	512 2.36	1.24	15	232 1	31 12	48 1.9	2 1.15	88	1.93	122						16.44		71.61	0.00	0.00
B3 Women in STEM red	10.65	3	1898	0.00	Equal variances not assumed	512 2.76	1.31	15	272 1	39 12	48 2.0	4 1.21	85	222	1.35						40.17	3 1	71.09	0.00	0.00
B4 It is equally difficult	2.79	3	1898	0.04	Equal variances not assumed	512 2.79	1.28	15	2.84 1	52 12	48 2.3	1 1.31	85	2.53	1.40						18.00	3 1	71.37	0.00	0.00
B5 Being promoted or t	12.74	3	1898	000	Equal variances not assumed	512 2.7	1.35	15	2.89 1	.38 12	48 2.1	7 121	85	2.29	1.38						22.45	3 1	70.90	0.00	0.00
B6 Women in STEM gei	17.46	3	1898	00.0	Equal variances not assumed	512 2.76	1.33	15	2.70 1	46 12	48 2.0	0 1.18	85	1.93	1.19						44.91	3 1	71.49	0.00	0.00
CD1 Women in STEM b	34.62	3	1898	00'0	Equal variances not assumed	512 2.94	1.42	22	277 1	31 12	48 1.9	4 1.12	85	2.28	1.37						71.67	3 1	<u> 69.96</u>	0.00	0.00
CD2 Women in STEM b	38.33	3	1898	0.00	Equal variances not assumed	512 2.8	1.42	25	2.89 1	41 12	48 1.9,	\$ 1.13	85	2.33	1.42						49.60	3 1	69.29	0.00	0.00
CD3 Women in STEM b	11.19	3	1898	0.00	Equal variances not assumed	512 2.97	1.4	15	2.82 1	34 12	48 2.2	5 1.21	88	2.60	1.48						34.61		70.65	0.00	0.0
CD4 Women in STEM b	7.94	3	1898	0.00	Equal variances not assumed	512 3.02	1.38	25	2.70 1	18 12	48 2.2	5 122	85	2.67	1.41						39.53	3 1	72.61	0.00	0.00
CD5 Women in STEM b	16.65	3	1898	0:00	Equal variances not assumed	512 2.35	1.33	15	2.54 1	34 12	48 1.8	3 1.14	88	2.08	1.27						19.23		70.77	0.00	0.0
CD6 Women in STEM b	1.58	3	1898	0.19	Equal variances assumed	512 3.38	1.27	15	3.00	36 12	48 2.3	3 1.30	8	2.68	1.41	369.19		123.06	72.92 0.	8					0.0
E1 I believe things will (45.48	3	1898	00.0	Equal variances not assumed	512 2.36	1.11	15	2.09 0	99 12	48 1.5	1 0.78	88	1.36	0.70						91.78	3 1	72.60	0.00	0.00
E2 It is crucial to have (8.62	3	1898	00.0	Equal variances not assumed	512 1.63	0.88	15	1.54 0	85 12	48 1.5	7 0.89	85	1.26	0.64						7.50	3 1	78.84	0.00	0.00
E3 It is appropriate to ir	9.33	3	1898	0.00	Equal variances not assumed	512 2.16	1.17.	5	1.84	.01 12	48 22	2 1.34	8	1.74	1.20						6.03	1	78.43	0:00	0.00
F1 In a relative sense,	8.44	~	1 838	0:0	Equal variances not assumed	512 3.77	1.27	15	3.54 1	46	48 2.5	5 1.36	8	2.53	1.60						110.95		71.28	0.00	0.00
F2 Primary breadwinne	65.61	~	3 8	0:0	Equal variances not assumed	512 4.36	1.04	15	363	45	48 3.2	5 1.47	8	2.85	<u>8</u>						115.05		73.56	0.0	0:0
F3 Women are born to	5.09	~	1898	0:00	Equal variances not assumed	512 3.71	1.33	15	3.56 1	57	48 2.9,	3 1.47	8	2.61	1.44						44.62	 	73.02	0.0	0.0
F4 In order to maintain t	114.88	~	3 83	0:0	Equal variances not assumed	512 4.44	0.98	6	3.72 1	49	48 3.3.	5 1.51	8	2.96	<u>8</u>						116.17	 	72.50	0.0	0.0
F5 I believe gender equ	5.04	~	1898	0:0	Equal variances not assumed	512 1.93	1.18	15	1.70	24 12	48 1.7	5 1.09	8	1.42	680						7.48	 	74.97	0.0	0.0
G1 Women are equally	45.09	~	1898	0:00	Equal variances not assumed	512 2.64	1.27	5	2.37 1	43 12	48 1.8	3 0.98	8	1.88	1.18						58.31	- -	68.42	0:00	0.00
G2 Women equally rec	55.37	~	1898	00.0	Equal variances not assumed	512 2.62	131	6	244 1	46 12	48 1.8	1 0.98	8	1.71	1.04						56.71	 	69.41	0:00	0:00
G3 The strictness, obje	44.95	~	1898	0:00	Equal variances not assumed	512 2.41	1.29	5	253 1	43 12	48 1.8	4 0.99	8	1.78	1.16						30.71	- -	68.75	0:0	0.00
G4 Dealing with funder	23.81	~	1898	00.0	Equal variances not assumed	512 2.51	1.24	6	256 1	44 12	48 1.9	9 1.06	8	1.95	126						24.74	 	69.12	0:00	0:00
G5 Women receive the	30.64	~	1898	0:00	Equal variances not assumed	512 2.75	1.39	5	2.88 1	54 12	48 2.0	5 1.17	8	211	1.35						37.18	- -	09.60	0:00	0.00
G6 Marriage, pregnand	1.43	~	1898	0.23	Equal variances assumed	512 3.57	1.43	6	282 1	53	48 2.5	1.41	8	234	1.56	429.63		143.21	0.65 0.	8					0.0
G7 Female students in	1.77	~	1898	0.15	Equal variances assumed	512 3.21	1.26	5	2.84 1	46 12	48 2.6	9 1.33	8	2.44	1.34	111.19		37.06	21.38 0.	8					0:00
H1 On balance, my STE	11.79	~	8	0:0	Equal variances not assumed	512 2.29	1.07	15	2.16 1	21	48	0.89	8	173	88						24.21		70.24	0:0	0.0
H2 I am considered by	11.90	~	1 838	0:0	Equal variances not assumed	512 2.33	1	15	2.05 1	14	48 1.9	7 0.94	8	17	0.92						17.54	 	71.88	0.0	0.0
H3 I have not been per	38.40	~	1898	0:0	Equal variances not assumed	512 2.78	1.42	15	251 1	31 12	48 2.0	1.13	8	222	1.43						41.36	 	69.82	0.00	0.0
H4 My family /partner /	3.85	3	1898	0.01	Equal variances not assumed	512 1.61	0.91	15	1.82	15 12	48 1.6	1 0.86	8	1.44	0.84						1.86	~	71.24	0.14	0.11
H5 My current colleagu	3.94	~	188	00	Equal variances not assumed	512 2.01	1.09		221 1	3	48 1.7	2 0.93	88	1.64	107						11.64	 	69.20	0:0	8

©2022 INWES & KWSE

GISE Report 2022

Across GII Groups - overall

								Independe	ent Sam	oles Test													<u>Ş</u>	skal-
Tesi	its of Hom	ogeneity (of Variances (based on Mean)					Desci	riptive Sta	tistics							ANOVA			Welch (Rob	ust Test of E	uality of Mea	vs)	allis
					lery High			lgh l		Med	ium		Low											
2 Female students in 7.79	3	1897	0.00 Equal variances not assumed	497	237	1.24	11	2.21	127	1271	1.94 1	16	56 1.6.	3 1.0	4					18.51		164.80	0.00	0.00
3 Women in STEM re 8.26	3	1897	0.00 Equal variances not assumed	497	2.79	1.30	11	2.48	1.36	1271	2.05 1	22	56 2.0	2 1.1	1					40.45	3	163.85	0:00	0.00
4 It is equally difficult0.56	3	1897	0.64 Equal variances assumed	497	2.80	1.29	11	2.68	1.39	1271	233 1	32	56 23	4 1.3	7 86.34	3	28.78	16.69	0:00					0.00
5 Being promoted or 1.71	3	1897	0.00 Equal variances not assumed	497	2.70	1.35	11	2.83	1.37	1271	2.18 1	21	56 2.1	8 1.3	4					22.00	3	162.33	0:00	0.00
6 Women in STEM ge5.13	3	1897	0.00 Equal variances not assumed	497	277	1.33	11	2.45	1.39	1271	2.02 1	20	56 1.6	8 0.9	0					47.06	8	167.28	0:00	0.00
D1 Women in STEM b2.31	3	1897	0.00 Equal variances not assumed	497	297	1.42	11	2.68	1.39	1271	1.95 1	13	56 2.0	2 1.2	5					71.71	~	161.60	0.00	0.00
D2 Women in STEM b2.44	3	1897	0.00 Equal variances not assumed	497	2.83	1.42	11	2.66	1.40	1271	2.00 1	15	56 2.1	5 1.3	2					47.34	8	161.26	0:00	0.00
D3 Women in STEM b7.15	•	1897	0.00 Equal variances not assumed	497	2.99	1.39	11	2.84	1.41	1271	2.28 1	22	56 2.3	1.3						35.00	~	162.17	0.00	0.00
D4 Women in STEM b6.24	3	1897	0.00 Equal variances not assumed	497	3.03	1.38	11	2.87	1.31	1271	2.27 1	22	56 23	1.32	2					41.15	8	162.92	0:00	0.00
D5 Women in STEM b9.11	~	1897	0.00 Equal variances not assumed	497	2.36	1.33	11	2.52	1.38	1271	1.88	1	20	1.1						20.28	~	162.31	0:0	0:00
D6 Women in STEM b1.67	~	1897	0.17 Equal variances assumed	497	3.41	1.25	11	3.05	1.45	1271	2.38 1	30	56 2.5	5 1.3	3 389.90	3	129.97	77.53	0:00					0.00
1 I believe things will 9.90	3	1897	0.00 Equal variances not assumed	497	238	1.11	11	1.82	0.90	1271	1.52 0	3 62	56 12	3 0.5	4					93.83		169.78	0:00	0.00
2 It is crucial to have 4.79	3	1897	0.00 Equal variances not assumed	497	1.64	0.89	11	1.32	0.59	1271	1.58 0	6	1.1	1 0.4						26.20		187.89	0:00	0.00
3 It is appropriate to 14.27	3	1897	0.00 Equal variances not assumed	497	2.16	1.17	11	1.64	0.89	1271	2.24 1	35	56 1.3	8 0.6	8					33.09	3	183.14	0.00	0.00
1 In a relative sense, 6.81	3	1897	0.00 Equal variances not assumed	497	3.79	1.26	11	3.34	1.53	1271	2.57 1	37 (56 2.0	4 1.3	3					115.28		163.60	0:00	0.00
2 Primary breadwinn 1.04	3	1897	0.00 Equal variances not assumed	497	4.38	1.02	11	3.78	1.36	1271	3.26 1	47	56 2.4	5 1.2						130.05	~	166.02	0:00	0.00
3 Women are born to 5.82	3	1897	0.00 Equal variances not assumed	497	3.74	1.32	11	3.39	1.48	1271	2.94 1	47 5	56 22	9 1.3	2					49.65	3	164.95	0.00	0.00
4 In order to maintain 4.88	3	1897	0.00 Equal variances not assumed	497	4.46	0.96	11	3.91	1.45	1271	3.35 1	51	56 2.4	5 1.4	0					129.29	3	164.31	0.00	0.00
5 I believe gender eq 8.60	3	1897	0.00 Equal variances not assumed	497	1.94	1.18	17	1.68	1.11	1271	1.75 1	10	56 1.3	0.7	_					11.42		171.40	0.00	0.00
1 Women are equally 6.97	3	1897	0.00 Equal variances not assumed	497	2.66	127	11	2.26	128	1271	1.83 1	00	56 1.7	1 1.0	6					58.95	3	161.27	0.00	0,00
2 Women equally red7.05	3	1897	0.00 Equal variances not assumed	497	2.64	1.30	11	2.30	1.36	1271	1.81 0	66	56 1.6.	3 1.0	4					57.10		161.30	0:00	0.00
3 The strictness, obj3.72	3	1897	0.00 Equal variances not assumed	497	2.43	1.28	11	2.30	1.41	1271	1.85 1	10	56 1.5	0 0.8	2					33.45	3	163.52	0.00	0.00
4 Dealing with funde8.22	3	1897	0.00 Equal variances not assumed	497	2.52	1.24	11	2.42	1.31	1271	2.00 1	10	1.1	7 1.1	9					25.38	3	161.80	0.00	0.00
5 Women receive the7.81	3	1897	0.00 Equal variances not assumed	497	2.77	1.39	11	2.81	1.49	1271	2.06 1	18	56 1.8	2 12	1					40.01		162.12	0.00	0.00
6 Marriage, pregnan 2.40	3	1897	0.07 Equal variances assumed	497	3.58	1.43	11	3.03	1.54	1271	2.50 1	41	56 1.94	8 1.3	7 456.05	3	152.02	75.57	0.00					0.00
7 Female students in 1.02	3	1897	0.38 Equal variances assumed	497	3.22	1.27	11	2.81	1.35	1271	2.69 1	33	56 22	9 1.3	2 114.37	3	38.12	22.03	0:00					0.00
1 On balance, my ST11.32	3	1897	0.00 Equal variances not assumed	497	2.31	1.08	11	2.04	0.98	1271	1.85 0	8	1.8	1.0	1					24.71		161.64	0.00	0.00
2 I am considered by 2.99	3	1897	0.00 Equal variances not assumed	497	234	1.10	11	1.97	1.03	1271	1.97 0	94	99	5 1.0	5					16.42	3	162.40	0.00	0.00
3 I have not been pel5.57	3	1897	0.00 Equal variances not assumed	497	2.79	1.42	11	2.65	1.35	1271	1.99 1.	13	56 22	5 1.4	2					44.24	8	160.68	0.00	0.00
4 My family /partner (2.29	~	1897	0.08 Equal variances assumed	497	1.61	0.92	11	1.73	1.10	1271	1.61 0		1.4	3 0.8	3 2.92	~	0.97	125	0.29					0.27
5 My current colleag(2.06	~	1897	0.10 Equal variances assumed	497	2.01	1.10	11	206	12	1271	1.72 0	8	1.6	1.0	7 36.31	~	12.10	1223	0.0					0.00

©2022 INWES & KWSE

GISE Report 2022

The results for Bonferroni adjusted comparisons of countries grouped by HDI or by GII were very similar, as can be seen below. Within a question: Each grouping is assigned a letter from a to d. Letters listed under "Mean is different from.." indicate that the means associated with each corresponding grouping are statistically different from the mean of the cluster reported under "HDI/GII Grouping". Letters are reported only once, but differences are valid for each pairwise comparison.

NB. In the tables for the comparative results below, any rows which did not show significant differences to other groups have been filtered out for conciseness. All data is available on request.

Independent Sa	mples Test: Multiple	Comparisons (Alp	ha = 0.05)			
Statements	HDI Group	Letter code	Mean	Mean is d	ifferent fro	om
B1	Very High	a	2.35	с		
B1	High	b	2.44	с		
B2	Very High	a	2.36	с	d	
B3	Very High	a	2.76	с	d	
B3	High	b	2.72	с		
B4	Very High	a	2.79	с		
B4	High	b	2.84	с		
B5	Very High	a	2.70	c	d	
B5	High	b	2.89	c	d	
B6	Very High	a	2.76	c	d	
B6	High	b	2.70	c	d	
CD1	Very High	a	2.94	c	d	
CD1	High	b	2.77	c		
CD2	Very High	a	2.80	c	d	
CD2	High	b	2.89	c	d	
CD3	Very High	a	2.97	c		
CD3	High	b	2.82	с		
CD4	Very High	a	3.02	с		
CD4	Low	d	2.67	с		
CD5	Very High	a	2.35	с		
CD5	High	b	2.54	с		
CD6	Very High	a	3.38	с	d	
CD6	High	b	3.00	с		
E1	Very High	a	2.36	с	d	
E1	High	b	2.09	с	d	
E2	Very High	a	1.63	d		
E2	Medium	с	1.57	d		
E3	Very High	a	2.16	d		
E3	Medium	с	2.22	d		
F1	Very High	a	3.77	с	d	
F1	High	b	3.54	с	d	
F2	Very High	a	4.36	b	c	d
F2	High	b	3.63	d		
F2	Medium	с	3.26	d		
F3	Very High	a	3.71	с	d	

Across HDI Groups - comparative

GISE Report 2022

F3	High	b	3.56	с	d	
F4	Very High	a	4.44	b	с	d
F4	High	b	3.72	d		
F5	Very High	a	1.93	с	d	
G1	Very High	a	2.64	с	d	
G1	High	b	2.37	с		
G2	Very High	a	2.62	с	d	
G2	High	b	2.44	с	d	
G3	Very High	a	2.41	с	d	
G3	High	b	2.53	с	d	
G4	Very High	a	2.51	с	d	
G4	High	b	2.56	с	d	
G5	Very High	a	2.75	с	d	
G5	High	b	2.88	с	d	
G6	Very High	a	3.57	b	c	d
G7	Very High	a	3.21	с	d	
H1	Very High	a	2.29	с	d	
H2	Very High	a	2.33	с	d	
H3	Very High	a	2.78	с	d	
H3	High	b	2.51	с		
H5	Very High	a	2.01	с	d	
H5	High	b	2.21	с	d	

Across GII Groups - comparative

Independent Sat	mples Test: Multiple	Comparisons (Alp	ha = 0.05)			
Statement	GII Group	Letter code	Mean	Mean is di	ifferent fro	om
B1	Very High	a	2.36	с		
B1	High	b	2.26	с		
B2	Very High	a	2.37	с	d	
B2	High	b	2.21	d		
B3	Very High	a	2.79	с	d	
B3	High	b	2.48	с		
B4	Very High	a	2.80	с		
B5	Very High	a	2.70	с	d	
B5	High	b	2.83	с	d	
B6	Very High	a	2.77	с	d	
B6	High	b	2.45	с	d	
CD1	Very High	a	2.97	c	d	
CD1	High	b	2.68	c	d	
CD2	Very High	a	2.83	с	d	
CD2	High	b	2.66	с		
CD3	Very High	a	2.99	с	d	
CD3	High	b	2.84	с		
CD4	Very High	a	3.03	с	d	
CD4	High	b	2.87	c		
CD5	Very High	a	2.36	c		
CD5	High	b	2.52	с		
CD6	Very High	a	3.41	с	d	
CD6	High	b	3.05	с		
E1	Very High	a	2.38	b	c	d
E1	High	b	1.82	c	d	

GISE Report 2022

E2	Very High	a	1.64	b	d	
E2	Medium	с	1.58	d		
E3	Very High	a	2.16	b	d	
E3	Medium	с	2.24	b	d	
F1	Very High	a	3.79	b	с	d
F1	High	b	3.34	с	d	
F1	Medium	с	2.57	d		
F2	Very High	a	4.38	b	с	d
F2	High	b	3.78	с	d	
F2	Medium	с	3.26	d		
F3	Very High	a	3.74	с	d	
F3	High	b	3.39	с	d	
F3	Medium	с	2.94	d		
F4	Very High	a	4.46	b	с	d
F4	High	b	3.91	с	d	
F4	Medium	с	3.35	d		
F5	Very High	a	1.94	с	d	
F5	Medium	с	1.75	d		
G1	Very High	a	2.66	b	с	d
G1	High	b	2.26	с	d	
G2	Very High	a	2.64	с	d	
G2	High	b	2.30	с	d	
G3	Very High	a	2.43	с	d	
G3	High	b	2.30	с	d	
G4	Very High	a	2.52	с	d	
G4	High	b	2.42	с	d	
G5	Very High	a	2.77	с	d	
G5	High	b	2.81	с	d	
G6	Very High	a	3.58	b	с	d
G6	High	b	3.03	с	d	
G6	Medium	с	2.50	d		
G7	Very High	a	3.22	с	d	
H1	Very High	a	2.31	с	d	
H2	Very High	a	2.34	b	c	d
H3	Very High	a	2.79	с	d	
H3	High	b	2.65	с		
H5	Very High	a	2.01	с	d	
H5	High	b	2.06	с		

B-8. Focus on Africa

For Africa only, further comparisons were made of

- African men and African women compared to the same gender in all other regions
- French-speaking and English-speaking Africa (here including the late responses). •

These are binary comparisons: e.g. the responses from a country/region are compared to the responses from all other countries/regions.

In the tables below, any data in BLUE indicates where the p-value (the probability that the results occurred by chance) is very low, hence indicating the averages and standard deviations are not by chance (alpha = 0.05).

Data in RED are for statements where respondents from the named groups are more likely to disagree compared to respondents from Data in GREEN and RED indicate where the mean differences between the named region or country and all other regions are notable. Data in GREEN are for statements where respondents elsewhere are more likely to disagree than the named group being considered. elsewhere Where the mean difference values were between 0.75 and -0.5, these results are generally not highlighted in RED or GREEN, other than where there are no obvious notable results, when the RED and GREEN are used to indicate the statements where there was highest disagreement.

CES	
Ĩ	
H	
РР	
\triangleleft	

(without late responses)
men
other
all
SA
men
African

					-	Idependent	Samples Te:	tt T-Tests									
	Leve	ene's Test for	Equality of Variances			Descriptive	 Statistics 					t-test fo	r Equality of M	eans			Mann- Whitney U
Statements	LL.	Sig.	Result	Other males	Other males (Other males	African	African	African	-	df	bignificance -	Mean	Std. Error	95% C.I. of	95% C.I. of A	symp. Sig. (2-
		- -		Ę	- Mean	· SD	males - n	males -	males - SD			Two-Sided p	Difference	Difference	Difference -	Difference -	tailed)
←	•	•	•	•	•	•	•	Mean 🔻	•	•	•	•	Þ	•	Lower 🔻	Upper 🔻	*
B1 Girls and boys are	0.58	0.44 E	Equal variances assumed	772	1.75	1.05	194	1.65	1.06	1.10	964.00	0.27	60.0	0.08	-0.07	0.26	0.15
B2 Female students il	90.05	0.83	Equal variances assumed	772	1.82	1.10	194	1.78	1.07	0.40	964.00	0.69	0.04	0.09	-0.14	0.21	0.68
B3 Women in STEM r	0.16	0.69	Equal variances assumed	772	1.88	1.12	194	1.90	1.15	-0.14	964.00	0.89	-0.01	0.09	-0.19	0.16	0.99
B4 It is equally difficul	14.44	0.00	equal variances not assumed	772	2.42	1.36	194	2.15	1.21	2.69	328.47	0.01	0.27	0.10	0.07	0.46	0.03
B5 Being promoted or	5.01	0.03	equal variances not assumed	772	2.18	1.22	194	2.09	1.13	1.02	316.68	0.31	0.09	0.09	60:0-	0.28	0.49
B6 Women in STEM (3.93	0.05 E	qual variances not assumed	772	1.96	1.14	194	1.70	1.02	3.11	327.58	0.00	0.26	0.08	0.10	0.42	0.00
CD1 Women in STEM	2.33	0.13 E	Equal variances assumed	772	1.75	1.05	194	1.85	1.03	-1.16	964.00	0.25	-0.10	0.08	-0.26	0.07	0.05
CD2 Women in STEM	0.36	0.55 E	Equal variances assumed	772	1.76	1.04	194	2.00	1.20	-2.72	964.00	0.01	-0.24	0.09	-0.41	-0.07	0.01
CD3 Women in STEM	2.31	0.13 E	equal variances assumed	772	2.05	1.12	194	2.35	1.21	-3.18	964.00	0.00	-0.29	0.09	-0.47	-0.11	0.00
CD4 Women in STEM	4.24	0.04 E	equal variances not assumed	772	2.06	1.14	194	2.41	1.26	-3.54	277.03	0.00	-0.35	0.10	-0.55	-0.16	<.001
CD5 Women in STEM	0.29	0.59 E	equal variances assumed	772	1.74	1.09	194	1.87	1.09	-1.41	964.00	0.16	-0.12	0.09	-0.30	0.05	0.04
CD6 Women in STEM	1.97	0.16 E	Equal variances assumed	772	2.27	1.30	194	2.28	1.26	-0.09	964.00	0.93	-0.01	0.10	-0.21	0.19	0.71
E11 believe things will	61.77	0.00	equal variances not assumed	772	1.54	0.82	194	1.26	0.54	5.69	440.17	0.00	0.28	0.05	0.18	0.37	<.001
E2 It is crucial to have	44.94	0.00	equal variances not assumed	772	1.75	0.98	194	1.32	0.71	6.81	395.49	0.00	0.42	0.06	0.30	0.55	<.001
E3 It is appropriate to	66.00	0.00	equal variances not assumed	772	2.55	1.42	194	1.60	0.99	10.81	413.32	0.00	0.95	0.09	0.78	1.12	<.001
F1 In a relative sense,	5.05	0.02	equal variances not assumed	772	2.67	1.32	194	2.02	1.29	6.34	302.65	0.00	0.66	0.10	0.45	0.86	<.001
F2 Primary breadwinn	12.70	0.00	equal variances not assumed	772	3.33	1.45	194	2.53	1.28	7.60	327.11	0.00	0.80	0.11	0.60	1.01	<.001
F3 Women are born to	8.57	0.00	equal variances not assumed	772	2.95	1.42	194	2.25	1.30	99.9	320.68	0.0	0.71	0.11	0.50	0.92	<.001
F4 In order to maintain	6.54	0.01 E	equal variances not assumed	772	3.51	1.47	194	2.41	1.39	9.73	309.06	0.00	1.10	0.11	0.88	1.32	<.001
F5 I believe gender eq	0.00	0.97 E	equal variances assumed	772	1.84	1.12	194	1.71	1.15	1.48	964.00	0.14	0.13	0.09	-0.04	0.31	0.03
G1 Women are equal	0.0	1.00 E	equal variances assumed	772	1.70	0.88	194	1.63	0.90	0.90	964.00	0.37	0.06	0.07	-0.08	0.20	0.20
G2 Women equally re	11.21	0.00	equal variances not assumed	772	1.71	0.91	194	1.51	0.76	3.20	349.09	0.00	0.20	0.06	0.08	0.33	0.01
G3 The strictness, ob	0.40	0.53 E	cqual variances assumed	772	1.74	0.94	194	1.66	0.95	1.06	964.00	0.29	0.08	0.08	-0.07	0.23	0.18
G4 Dealing with funde	5.58	0.02	equal variances not assumed	772	1.86	0.99	194	1.87	1.16	90:0-	268.49	0.96	0.00	0.09	-0.18	0.17	0.37
G5 Women receive th	0.25	0.62	equal variances assumed	772	1.86	1.06	194	1.84	1.12	0.31	964.00	0.76	0.03	0.09	-0.14	0.20	0.48
G6 Marriage, pregnan	1.76	0.19	cqual variances assumed	772	2.45	1.32	194	1.98	1.36	4.34	964.00	0.00	0.46	0.11	0.25	0.67	<.001
G7 Female students i	2.48	0.12	equal variances assumed	772	2.86	1.38	194	2.35	1.27	4.71	964.00	0.00	0.51	0.11	0.30	0.73	<.001
H1 On balance, my S	4.22	0.04 E	equal variances not assumed	772	1.83	0.83	194	1.82	0.97	0.02	268.03	0.98	0.00	0.08	-0.15	0.15	0.38
H2 I am considered by	1.72	0.01 E	equal variances not assumed	772	2.02	0.93	194	1.78	1.03	2.88	278.87	0.0	0.23	0.08	0.07	0.39	<.001
H3 I have not been pe	2.83	0.09 E	cqual variances assumed	772	1.81	1.02	194	1.87	1.13	-0.77	964.00	0.44	90.0-	0.08	-0.23	0.10	0.82
H4 My family /partner	1.09	0.30 E	cqual variances assumed	772	1.56	0.78	194	1.61	0.88	-0.78	964.00	0.44	-0.05	0.06	-0.18	0.08	0.66
H5 My current colleag	1.99	0.16	cqual variances assumed	772	1.64	0.89	194	1.68	26:0	-0.59	964.00	0.55	-0.04	0.07	-0.19	0.10	0.87

©2022 INWES & KWSE

GISE Report 2022

CES	
Ĩ	
PEN	
AP	

responses)
late
(without
women
other
all
SV
women
African

					<u> </u>	Idependent	Samples Tes	st: T-Tests									
	Lev	/ene's Test for Eq	uality of Variances			Descriptiv	e Statistics					t-test fo	r Equality of M	leans			Mann- Whitney U
Statements	L	Sig.	Result	Other	Other	Other	African	African	African	-	đf	Significance	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
				females/non-t	females/non-	females/non-	females/non-	females/non-f	emales/non-			- Two-Sided	Difference	Difference	Difference -	Difference -	(2-tailed)
				binary - n	binary -	binary - SD	binary - n	binary -	binary - SD			đ			Lower	Upper	
L.	•	•	4	•	Mean 🔻	•	•	Mean 🔻	•	•	•	•	4	•	•	•	*
B1 Girls and boys are e	9.47	0.00 Equi	al variances not assumed	702	2.38	1.33	242	2.07	1.29	3.23	431.02	0.00	0.31	0.10	0.12	0:50	<,001
B2 Female students in	9.64	0.00 Equi	al variances not assumed	702	2.42	1.25	242	1.94	1.21	5.35	432.08	0.00	0.49	0.0	0.31	0.66	<.001
B3 Women in STEM rei	1.09	0.30 Equa	al variances assumed	702	2.78	1.31	242	2.21	1.32	5.83	942.00	0.00	0.57	0.10	0.38	0.76	<.001
B4 It is equally difficult t	2.02	0.16 Equi	al variances assumed	702	2.67	1.31	242	2.30	1.30	3.73	942.00	0.00	0.36	0.10	0.17	0.55	<.001
B5 Being promoted or b	1.60	0.21 Equa	al variances assumed	702	2.59	1.34	242	2.36	1.34	2.36	942.00	0.02	0.24	0.10	0.04	0.43	0.01
B6 Women in STEM ge	7.56	0.01 Equa	al variances not assumed	702	2.72	1.34	242	2.06	1.30	6.70	429.44	0.00	99:0	0.10	0.46	0.84	<.001
CD1 Women in STEM t	2.48	0.12 Equi	al variances assumed	702	2.85	1.36	242	2.42	1.28	4.28	942.00	0.00	0.43	0.10	0.23	0.62	<,001
CD2 Women in STEM t	2.22	0.14 Equi	al variances assumed	702	2.77	1.35	242	2.46	1.28	3.09	942.00	0.00	0.31	0.10	0.11	0.50	0.00
CD3 Women in STEM t	3.83	0.05 Equi	al variances assumed	702	2.90	1.35	242	2.76	1.41	1.44	942.00	0.15	0.15	0.10	-0.05	0.35	0.12
CD4 Women in STEM t	0.15	0.70 Equi	al variances assumed	702	2.92	1.34	242	2.73	1.34	1.89	942.00	0.06	0.19	0.10	-0.01	0.39	0.05
CD5 Women in STEM t	1.20	0.27 Equi	al variances assumed	702	2.37	1.28	242	2.16	1.29	2.15	942.00	0.03	0.21	0.10	0.02	0.39	0.02
CD6 Women in STEM t	2.16	0.14 Equi	al variances assumed	702	3.19	1.31	242	2.80	1.33	3.99	942.00	0.00	0.39	0.10	0.20	0.58	<.001
E11 believe things will t	40.84	0.00 Equa	al variances not assumed	702	2.21	1.07	242	1.44	0.74	12.30	603.44	0.00	0.77	0.06	0.65	0.89	<.001
E2 It is crucial to have s	71.43	0.00 Equi	al variances not assumed	702	1.56	0.83	242	1.22	09.0	6.83	573.07	0.00	0.34	0.05	0.24	0.44	<.001
E3 It is appropriate to ir	43.97	0.00 Equi	al variances not assumed	702	2.16	1.18	242	1.44	0.80	10.57	613.16	0.00	0.72	0.07	0.59	0.85	<.001
F1 In a relative sense, r	0.46	0.50 Equi	al variances assumed	702	3.58	1.37	242	2.41	1.45	11.31	942.00	0.00	1.17	0.10	0.97	1.37	<.001
F2 Primary breadwinner	31.65	0.00 Equi	al variances not assumed	702	4.26	1.16	242	2.97	1.43	12.72	355.41	0.00	1.30	0.10	1.10	1.50	<.001
F3 Women are born to I	13.11	0.00 Equi	al variances not assumed	702	3.75	1.34	242	2.70	1.51	9.63	381.34	0.00	1.05	0.11	0.84	1.27	<.001
F4 In order to maintain t	67.84	0.00 Equi	al variances not assumed	702	4.33	1.11	242	3.00	1.50	12.63	337.39	0.00	1.33	0.10	1.12	1.53	<.001
F5 I believe gender equa	9.37	0.00 Equi	al variances not assumed	702	1.82	1.15	242	1.55	1.01	3.50	468.98	0.00	0.27	0.08	0.12	0.43	<.001
G1 Women are equally	7.11	0.01 Equi	al variances not assumed	702	2.59	1.24	242	2.05	1.20	6.00	431.55	0.00	0.54	0.0	0.36	0.72	<.001
G2 Women equally rect	28.70	0.00 Equi	al variances not assumed	702	2.61	1.27	242	1.90	1.11	8.27	474.66	0.00	0.71	0.0	0.54	0.88	<.001
G3 The strictness, obje	13.19	0.00 Equi	al variances not assumed	702	2.45	1.24	242	1.90	1.14	6.30	452.07	0.00	0.55	0.09	0.38	0.72	<.001
G4 Dealing with funders	1.40	0.24 Equi	al variances assumed	702	2.55	1.19	242	2.12	1.20	4.83	942.00	0.00	0.43	0.09	0.26	0.60	<.001
G5 Women receive the	0.22	0.64 Equi	al variances assumed	702	2.81	1.35	242	2.36	1.35	4.56	942.00	0.00	0.46	0.10	0.26	0.66	<.001
G6 Marriage, pregnancy	14.92	0.00 Equa	al variances not assumed	702	3.44	1.44	242	2.67	1.61	6.54	381.40	0.00	0.77	0.12	0.54	1.00	<.001
G7 Female students in	13.22	0.00 Equi	al variances not assumed	702	2.99	1.25	242	2.57	1.39	4.14	384.49	0.00	0.42	0.10	0.22	0.62	<.001
H1 On balance, my STE	0.53	0.47 Equi	al variances assumed	702	2.22	1.05	242	1.89	1.02	4.24	942.00	0.00	0.33	0.08	0.18	0.48	<.001
H2 I am considered by (0.23	0.63 Equi	al variances assumed	702	2.26	1.04	242	1.86	1.00	5.19	942.00	0.00	0.40	0.08	0.25	0.55	<.001
H3 I have not been pers	2.44	0.12 Equi	al variances assumed	702	2.76	1.32	242	2.36	1.41	4.00	942.00	0.00	0.40	0.10	0.20	0.60	<.001
H4 My family /partner /f	2.50	0.11 Equi	al variances assumed	702	1.69	0.96	242	1.51	0.93	2.51	942.00	0.01	0.18	0.07	0.04	0.32	0.00
H5 My current colleagu	2.69	0.10 Equi	al variances assumed	702	2.04	1.05	242	1.78	11	3.21	942.00	0.00	0.25	0.08	0.10	0.41	<.001

GISE Report 2022

uses
respoi
late
ncluding
Ē
Africa
peaking
French-s
2
peaking v
English-s

						Independer	it Samples T	est: T-Tests									
	Levene	's Test for E	equality of Variances			Descriptive	Statistics					t-test for	Equality of I	Means			Mann- Whitnev U
Statements	L	Sig.	Result	English - n	English -	English - SD	French - n	French - F	rench - SD		đf	ignificance	Mean	Std. Error	95% C.I. of	95% C.I. of	Asymp. Sig.
÷					Mean			Mean				Two-Sided	Difference	Difference	Difference -	Difference -	(2-tailed)
•	•	•		+	•	•	•	•	•	•	•	► •	•	•	Lower 🔻	Upper	•
B1 Girls and boys are (23.14	0.00 E	Equal variances not assumed	301	1.73	1.18	650	1.55	0.91	2.39	471.04	0.02	0.18	0.08	0.03	0.33	0.25
32 Female students in	52.41	0.00	Equal variances not assumed	301	1.99	1.24	650	1.54	0.86	5.59	436.28	0.0	0.44	0.08	0.29	09.0	<:001
33 Women in STEM re	35.46	0.00	Equal variances not assumed	301	2.10	1.29	650	1.70	0.98	4.74	464.81	0.0	0.40	0.08	0.23	0.56	<:001
34 It is equally difficult	24.83	0.00	Equal variances not assumed	301	2.22	1.31	650	2.02	1.09	2.28	499.59	0.02	0.20	0.09	0.03	0.37	0.15
35 Being promoted or I	13.72	0.00 E	Equal variances not assumed	301	2.26	1.27	650	2.04	1.13	2.60	527.24	0.01	0.22	0.09	0.05	0.39	0.02
36 Women in STEM ge	8.88	0.00	Equal variances not assumed	301	1.91	1.20	650	1.76	1.01	1.82	501.26	0.07	0.15	0.08	-0.01	0.30	0.30
CD1 Women in STEM I	6:99	0.01 E	Equal variances not assumed	301	2.08	1.17	650	1.84	1.03	3.15	522.35	0.0	0.25	0.08	0.09	0.40	0.00
CD2 Women in STEM I	28.18	0.00 E	Equal variances not assumed	301	2.15	1.27	650	1.91	1.05	2.84	495.63	0.0	0.24	0.08	0.07	0.40	0.04
CD3 Women in STEM I	38.87	0.00 E	Equal variances not assumed	301	2.55	1.38	650	2.13	1.16	4.56	504.43	0.0	0.42	0.09	0.24	09.0	<.001
CD4 Women in STEM I	27.05	0.00 E	Equal variances not assumed	301	2.52	1.32	650	2.13	1.15	4.38	518.39	0.0	0.39	0.09	0.21	0.56	<:00
CD5 Women in STEM I	30.49	0.00 E	Equal variances not assumed	301	2.05	1.30	650	1.72	0.99	3.83	467.25	0.0	0.32	0.08	0.16	0.49	0.00
CD6 Women in STEM I	42.47	0.00 E	Equal variances not assumed	301	2.52	1.39	650	2.17	1.16	3.74	502.41	0.0	0.34	0.09	0.16	0.53	0.00
E1 I believe things will t	31.89	0.00	Equal variances not assumed	301	1.28	0.55	650	1.41	0.74	-3.07	762.19	0.0	-0.13	0.04	-0.22	-0.05	0.05
E2 It is crucial to have :	0.03	0.87	Equal variances assumed	301	1.36	0.70	650	1.33	0.71	0.47	949.00	0.64	0.02	0.05	-0.07	0.12	0.24
E3 It is appropriate to it	00.00	0.97 E	Equal variances assumed	301	1.54	0.94	650	1.55	0.87	-0.13	949.00	06.0	-0.01	0.06	-0.13	0.11	0.64
F1 In a relative sense,	34.84	0.00	Equal variances not assumed	301	2.12	1.44	650	1.89	1.11	2.38	472.62	0.02	0.22	0.09	0.04	0.41	0.37
F2 Primary breadwinne	31.94	0.00 E	Equal variances not assumed	301	2.85	1.48	650	2.37	1.23	4.90	499.09	0.0	0.48	0.10	0.29	0.67	<,001
-3 Women are born to	28.93	0.00 E	Equal variances not assumed	301	2.46	1.44	650	2.12	1.23	3.54	511.09	0.0	0.34	0.10	0.15	0.53	0.00
⁵⁴ In order to maintain	59.10	0.00 E	Equal variances not assumed	301	2.69	1.58	650	2.14	1.27	5.33	487.34	0.0	0.55	0.10	0.35	0.76	<,001
51 believe gender eq	00.00	0.95 E	Equal variances assumed	301	1.63	1.08	650	1.71	1.03	-1.16	949.00	0.25	-0.08	0:07	-0.23	0.06	0.04
G1 Women are equally	8.89	0.00 E	Equal variances not assumed	301	1.79	1.07	650	1.63	0.92	2.30	512.90	0.02	0.16	0.07	0.02	0.31	0.06
32 Women equally rec	18.81	0.00 E	Equal variances not assumed	301	1.68	0.99	650	1.51	0.80	2.65	487.48	0.01	0.17	0.06	0.04	0.30	0.05
G3 The strictness, obje	12.21	0.00 E	Equal variances not assumed	301	1.82	1.11	650	1.66	0.91	2.20	494.92	0.03	0.16	0.07	0.02	0.31	0.14
34 Dealing with funder	1.81	0.18 E	Equal variances assumed	301	1.98	1.13	650	1.87	1.07	1.50	949.00	0.13	0.11	0.08	-0.04	0.26	0.19
G5 Women receive the	14.50	0.00 E	Equal variances not assumed	301	2.05	1.28	650	1.86	1.10	2.27	512.86	0.02	0.19	0.09	0.03	0.36	0.12
36 Marriage, pregnand	156.03	0.00	Equal variances not assumed	301	2.68	1.61	650	1.78	1.12	8.77	438.70	0.0	0.90	0.10	0.70	1.10	<,001
37 Female students in	5.88	0.02 E	Equal variances not assumed	301	2.57	1.34	650	2.35	1.27	2.44	558.00	0.02	0.22	0.09	0.04	0.40	0.02
H1 On balance, my STI	3.36	0.07 E	Equal variances assumed	301	1.81	0.92	650	1.84	0.97	-0.37	949.00	0.71	-0.02	0.07	-0.16	0.11	0.93
H2 I am considered by	0.18	0.67 E	Equal variances assumed	301	1.87	0.96	650	1.96	0.98	-1.31	949.00	0.19	-0.09	0.07	-0.22	0.04	0.17
H3 I have not been per	3.87	0.05 E	Equal variances not assumed	301	1.96	1.28	650	1.95	1.11	0.15	518.92	0.88	0.01	0.09	-0.16	0.18	0.40
44 My family /partner /f	8.30	0.00 E	Equal variances not assumed	301	1.49	0.84	650	1.62	0:00	-2.27	619.65	0.02	-0.14	0.06	-0.25	-0.02	0.02
H5 My current colleagu	8.84	0:00 E	Equal variances not assumed	301	1.59	0.86	650	1.75	1.00	-2.55	668.75	0.01	-0.16	0.06	-0.29	-0.04	0.03

GISE Report 2022

©2022 INWES & KWSE

Appendix C: Calculating the GISE Index

The following shows the intermediate calculated values, with a dictionary for each column heading.

The intermediate calculations

The values in BLUE are the final values to be considered. The remainder are intermediate values.

GISECountry/Region	GISE_INDEX	GISE_INDEX RANK	FACT_1_ INDEX	FACT_1_ INDEX RA	FACT_2_ INDEX	FACT_2_ INDEX RA	B_ABS	CD_ABS	F_ABS	CD_COMP	E_COMP	G_COMP	H_COMP	B1_ABS	B2_ABS
Africa	0.00	1	0.00	1	0.00	1	2.16	2.56	2.77	0.34	0.20	0.30	0.12	2.07	1.94
India	0.16	2	0.14	2	0.16	2	2.24	2.33	3.56	0.38	0.18	0.40	0.23	2.10	2.21
Taiwan	0.42	3	0.45	3	0.32	3	2.35	2.74	4.13	0.87	0.37	0.41	0.21	1.71	2.11
Japan	0.70	4	0.72	5	0.56	5	2.72	3.09	4.31	0.42	0.66	0.77	0.45	2.32	2.78
European Union	0.73	5	0.95	7	0.33	4	3.42	3.20	4.31	0.30	0.43	0.51	0.34	3.39	2.93
RoW	0.81	6	0.79	6	0.70	6	3.04	2.98	4.39	0.84	0.43	0.79	0.47	2.97	2.66
South Korea	0.87	7	0.65	4	1.00	8	2.56	3.23	4.02	1.09	0.96	1.02	0.36	2.36	2.18
South America	1.00	8	1.00	8	0.83	7	3.27	3.36	4.44	1.26	0.71	0.74	0.42	3.05	2.87
						1	1		1	1					
GISECountry/Region	B3_ABS	B4_ABS ▼	B5_ABS	B6_ABS	CD1_ABS	CD2_ABS	CD3_ABS	CD4_ABS	CD5_ABS	CD6_ABS	F1_ABS	F2_ABS	F3_ABS	F4_ABS	ZB1_ABS
Africa	2.21	2.30	2.36	2.06	2.42	2.46	2.76	2.73	2.16	2.80	2.41	2.97	2.70	3.00	-0.74696
India	2.36	2.23	2.23	2.31	2.25	2.26	2.42	2.40	2.08	2.58	2.96	3.85	3.50	3.93	-0.68680
Taiwan	2.57	2.54	2.63	2.51	2.51	2.43	2.77	2.77	2.46	3.51	3.77	4.23	3.91	4.60	-1.35765
Japan	3.08	2.85	2.36	2.92	3.33	3.18	3.02	3.21	2.16	3.64	4.05	4.66	3.91	4.62	-0.30095
European Union	3.52	3.41	3.68	3.61	3.27	3.11	3.36	3.34	2.70	3.39	4.18	4.50	4.09	4.48	1.54464
RoW	3.08	2.86	3.25	3.42	3.15	2.90	3.27	3.15	2.49	2.93	4.12	4.59	4.22	4.63	0.81518
South Korea	2.83	2.80	2.58	2.58	3.21	3.11	3.28	3.28	2.72	3.79	3.60	4.38	3.61	4.49	-0.23283
South America	3.37	3.45	3.55	3.32	3.29	3.34	3.45	3.42	3.08	3.55	4.45	4.55	4.21	4.55	0.96537
GISECountry/Region	ZB2_ABS	ZB3_ABS	ZB4_ABS	ZB5_ABS 🗸	ZB6_ABS	ZCD1_ABS	ZCD2_ABS	ZCD3_ABS	ZCD4_ABS	ZCD5_ABS	ZCD6_ABS	ZF1_ABS	ZF2_ABS	ZF3_ABS	ZF4_ABS
Africa	-1.33678	-1.41584	-1.11219	-0.82194	-1.38048	-1.12740	-0.94675	-0.78402	-0.85344	-0.92950	-1.06721	-1.86294	-2.20088	-2.11902	-2.26554
India	-0.65273	-1.09705	-1.27324	-1.04118	-0.94842	-1.50299	-1.44491	-1.71402	-1.76480	-1.17171	-1.57349	-1.06500	-0.64816	-0.52803	-0.63414
Taiwan	-0.88588	-0.65536	-0.57983	-0.34914	-0.58030	-0.92183	-1.03072	-0.74207	-0.74233	-0.07235	0.54248	0.11468	0.02042	0.28674	0.55221
Japan	0.82886	0.42280	0.08957	-0.81126	0.14290	0.88686	0.80463	-0.07002	0.46872	-0.92840	0.82297	0.51470	0.78272	0.27365	0.57930
European Union	1.20541	1.37364	1.33203	1.47359	1.36458	0.75828	0.64941	0.88934	0.83853	0.64410	0.25353	0.71223	0.49831	0.63739	0.33607
RoW	0.51269	0.43948	0.12986	0.73362	1.02861	0.49205	0.12131	0.63466	0.31563	0.02722	-0.77233	0.62025	0.66244	0.89434	0.59997
South Korea	-0.71481	-0.11220	-0.00270	-0.43370	-0.46456	0.61965	0.63730	0.66613	0.67669	0.70229	1.16494	-0.13282	0.29418	-0.31994	0.36334
South America	1.04324	1.04452	1.41651	1.25002	0.83766	0.79538	1.20974	1.12001	1.06100	1.72834	0.62910	1.09889	0.59098	0.87486	0.46879
GISECountry/Region	CD1_COMP	CD2_COMP	CD3_COMP	CD4_COMP	CD5_COMP	CD6_COMP	E1_COMP	E2R_COMP	E3R_COMP	G1_COMP	G2_COMP	G3_COMP	G4_COMP	G5_COMP	G6_COMP
---------------------------	------------	----------	-----------	----------	----------	----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	------------
Africa	0.49	0.37	0.31	0.25	0.24	0.40	0.28	0.15	0.18	0.39	0.41	0.23	0.21	0.42	0.46
India	0.50	0.47	0.35	0.33	0.31	0.30	0.41	0.12	0.02	0.48	0.52	0.41	0.39	0.51	0.46
Taiwan	0.85	0.67	0.91	0.80	0.89	1.12	0.18	0.39	0.54	0.54	0.39	0.35	0.53	0.50	0.59
Japan	0.99	1.06	0.06	0.10	0.22	0.11	0.31	0.61	. 1.06	0.83	0.97	0.89	0.79	1.20	0.46
European Union	0.26	0.21	0.44	0.39	0.18	0.31	0.47	0.30	0.51	0.67	0.60	0.42	0.54	0.66	0.44
RoW	1.12	1.10	0.87	0.87	0.77	0.28	0.73	0.23	0.32	1.09	0.95	0.79	0.80	1.01	0.42
South Korea	1.16	1.36	1.05	1.09	0.69	1.21	0.58	1.27	1.04	1.15	1.11	0.97	1.07	1.11	1.17
South America	1.30	1.32	1.50	1.44	1.06	0.93	0.49	1.10	0.54	0.61	1.13	0.73	1.00	1.41	0.28
GISECountry/Region	G7R COMP	H1 COMP	H2 COMP	H3 COMP	H4 COMP	H5 COMP	ZCD1 COMP	ZCD2 COMP	ZCD3 COMP	ZCD4 COMP	ZCD5 COMP	ZCD6 COMP	ZE1 COMP	ZE2R COMP	ZE3R COMP
<pre>unit f integre</pre>					*							v	*		Ψ.
Africa	0.00	0.07	0.08	0.38	0.00	0.10	-0.92689	-1.00969	-0.79096	-0.88645	-0.87134	-0.42442	-0.86559	-0.83196	-0.92391
India	0.00	0.17	0.15	0.42	0.20	0.24	-0.87649	-0.78143	-0.71112	-0.70212	-0.67224	-0.64848	-0.09534	-0.91498	-1.36576
Taiwan	0.00	0.22	0.00	0.50	0.04	0.28	0.04256	-0.33758	0.47859	0.30113	0.97912	1.25061	-1.41998	-0.30343	0.02964
Japan	0.29	0.34	0.00	1.29	0.00	0.63	0.41334	0.53910	-1.32479	-1.19634	-0.94818	-1.09916	-0.70727	0.20655	1.43867
European Union	0.22	0.04	0.00	0.82	0.26	0.57	-1.52362	-1.36443	-0.50848	-0.57319	-1.05457	-0.63054	0.24259	-0.51407	-0.04807
RoW	0.45	0.37	0.42	1.15	0.00	0.41	0.76685	0.62812	0.39028	0.45227	0.65438	-0.70045	1.68414	-0.66133	-0.56022
South Korea	0.57	0.36	0.06	1.04	0.12	0.20	0.85641	1.20872	0.76851	0.93224	0.42661	1.44422	0.85952	1.70517	1.37525
South America	0.00	0.63	0.53	0.95	0.00	0.00	1.24782	1.11719	1.69797	1.67247	1.48621	0.80821	0.30193	1.31404	0.05441
GISECountry/Region	ZE3R_COMP	ZG1_COMP	ZG2_COMP	ZG3_COMP	ZG4_COMP	ZG5_COMP	ZG6_COMP	ZG7R_COMP	ZH1_COMP	ZH2_COMP	ZH3_COMP	ZH4_COMP	ZH5_COMP	ZB_ABS	ZCD_ABS
Africa	-0 02301	-1 19060	-1 12110	-1 32030	-1 52812	-1 15836	-0 28943	-0 83333	-1 07271	-0 38472	-1 26529	-0 75262	-0 94415	-1 14	-0.95
India	-1 36576	-0.85463	-0 76661	-0 67198	-0.91527	-0 91247	-0 26512	-0.83333	-0 53419	-0.03560	-1 14419	1 17867	-0 28938	-0.95	-1 53
Taiwan	0.02964	-0.64962	-1.18875	-0.89116	-0.44722	-0.93523	0.18634	-0.83333	-0.27824	-0.75046	-0.90975	-0.32210	-0.12284	-0.73	-0.49
Japan	1.43867	0.37924	0.68279	1.04537	0.39687	0.92336	-0.27423	0.41269	0.31277	-0.75046	1.34786	-0.75262	1.47894	0.06	0.33
European Union	-0.04807	-0.16718	-0.51135	-0.64783	-0.42755	-0.50774	-0.34125	0.13073	-1.23449	-0.75046	0.01130	1.75576	1.21187	1.38	0.67
RoW	-0.56022	1.31357	0.60405	0.67613	0.45009	0.41973	-0.43560	1.12757	0.49688	1.29973	0.94825	-0.75262	0.49355	0.61	0.14
South Korea	1.37525	1.54620	1.11777	1.33561	1.35971	0.69267	2.35625	1.66234	0.46586	-0.43888	0.63690	0.39816	-0.44523	-0.33	0.74
South America	0.05441	-0.37697	1.18328	0.48325	1.11150	1.47804	-0.93696	-0.83333	1.84413	1.81086	0.37491	-0.75262	-1.38276	1.09	1.09
GISECountry/Regio	zF_ABS	ZCD_CC	IMP ZE_CO	MPZG_C	OMPZH_	COMP FA	.CT_1	FAG	T_2	GISE_I	NDEX_RAW	MEN_RE	SPONDENTS	WOMEN_	RESPONDENT
Africa	-2	11 -	0.82	-0.87	-1.06	-0.88		-1.40		0.01	-1	15	10	* S	2/12
India	-0	.72 -	0.73	-0.79	-0.75	-0.16		-1.07	-	0.61	-0	.84	64	4	258
Taiwan	0	.24	0.45	-0.56	-0.68	-0.48		-0.33		0.32	-0	.32	2	7	35
Japan	0	.54 -	0.60	0.31	0.51	0.33		0.31		0.14	0	.22	1	6	130
European Unio	n 0	.55 -	0.94	-0.11	-0.35	0.20		0.87	-	0.30	0	.28	2	1	44
RoW	0	.69	0.37	0.15	0.59	0.50		0.48		0.40	0	.44	4	1	59
South Korea	0	.05	0.94	1.31	1.44	0.12		0.16		0.95	0	.55	1	8	138
South America	0	.76	1.34	0.56	0.30	0.38		0.98		0.64	0	.81		5	38

Dictionary

Variable	Label
GISECountry	GISE Country
GISE_INDEX	GISE Index (bounded between 0 and 1; smaller values are better)
GISE_INDEX_RANK	GISE Index Rank (best to worst)
FACT_1_INDEX	Factor 1 Index: Perceptions and direct experience of women in regards to gender barriers and gender roles (bounded between 0 and 1; smaller values are better)
FACT_1_INDEX_RANK	Factor 1 Rank: Perceptions and direct experience of women in regards to gender barriers and gender roles (best to worst)
FACT_2_INDEX	Factor 2 Index: Perceived disadvantage by women in regards to experience and outlook of gender barriers, gender equality, policies and career in STEM (bounded between 0 and 1; smaller values are better)
FACT_2_INDEX_RANK	Factor 2 Rank: Perceived disadvantage by women in regards to experience and outlook of gender barriers, gender equality, policies and career in STEM (best to worst)
B_ABS	Section B Average (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
CD_ABS	Section CD Average (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
F_ABS	Section F Average (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) EXCLUDES F5
CD_COMP	Section CD Standardized Mean Difference Average (comparative; higher scores represent greater perceived disadvantage by women over men)
E_COMP	Section E Standardized Mean Difference Average (comparative; higher scores represent greater perceived disadvantage by women over men)
G_COMP	Section G Standardized Mean Difference Average (comparative; higher scores represent greater perceived disadvantage by women over men)
H_COMP	Section H Standardized Mean Difference Average (comparative; higher scores represent greater perceived disadvantage by women over men)
B1_ABS	B1 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
B2_ABS	B2 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
B3_ABS	B3 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
B4_ABS	B4 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)

Variable	Label
B5_ABS	B5 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
B6_ABS	B6 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
CD1_ABS	CD1 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
CD2_ABS	CD2 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
CD3_ABS	CD3 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
CD4_ABS	CD4 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
CD5_ABS	CD5 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
CD6_ABS	CD6 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
F1_ABS	F1 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
F2_ABS	F2 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
F3_ABS	F3 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
F4_ABS	F4 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women)
ZB1_ABS	ZB1 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZB2_ABS	ZB2 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZB3_ABS	ZB3 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZB4_ABS	ZB4 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZB5_ABS	ZB5 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZB6_ABS	ZB6 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED

Variable	Label
ZCD1_ABS	ZCD1 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZCD2_ABS	ZCD2 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZCD3_ABS	ZCD3 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZCD4_ABS	ZCD4 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZCD5_ABS	ZCD5 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZCD6_ABS	ZCD6 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZF1_ABS	ZF1 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZF2_ABS	ZF2 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZF3_ABS	ZF3 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZF4_ABS	ZF4 (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
CD1_COMP	CD1 (comparative; higher scores represent greater perceived disadvantage by women over men)
CD2_COMP	CD2 (comparative; higher scores represent greater perceived disadvantage by women over men)
CD3_COMP	CD3 (comparative; higher scores represent greater perceived disadvantage by women over men)
CD4_COMP	CD4 (comparative; higher scores represent greater perceived disadvantage by women over men)
CD5_COMP	CD5 (comparative; higher scores represent greater perceived disadvantage by women over men)
CD6_COMP	CD6 (comparative; higher scores represent greater perceived disadvantage by women over men)
E1_COMP	E1 (comparative; higher scores represent greater perceived disadvantage by women over men)
E2R_COMP	E2R (comparative; higher scores represent greater perceived disadvantage by women over men) (reverse-coded)
E3R_COMP	E3R (comparative; higher scores represent greater perceived disadvantage by women over men) (reverse-coded)
G1_COMP	G1 (comparative; higher scores represent greater perceived disadvantage by women over men)
G2_COMP	G2 (comparative; higher scores represent greater perceived disadvantage by women over men)

Variable	Label
G3_COMP	G3 (comparative; higher scores represent greater perceived disadvantage by women over men)
G4_COMP	G4 (comparative; higher scores represent greater perceived disadvantage by women over men)
G5_COMP	G5 (comparative; higher scores represent greater perceived disadvantage by women over men)
G6_COMP	G6 (comparative; higher scores represent greater perceived disadvantage by women over men)
G7R_COMP	G7R (comparative; higher scores represent greater perceived disadvantage by women over men) (reverse-coded)
H1_COMP	H1 (comparative; higher scores represent greater perceived disadvantage by women over men)
H2_COMP	H2 (comparative; higher scores represent greater perceived disadvantage by women over men)
H3_COMP	H3 (comparative; higher scores represent greater perceived disadvantage by women over men)
H4_COMP	H4 (comparative; higher scores represent greater perceived disadvantage by women over men)
H5_COMP	H5 (comparative; higher scores represent greater perceived disadvantage by women over men)
ZCD1_COMP	ZCD1 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZCD2_COMP	ZCD2 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZCD3_COMP	ZCD3 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZCD4_COMP	ZCD4 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZCD5_COMP	ZCD5 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZCD6_COMP	ZCD6 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZE1_COMP	ZE1 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZE2R_COMP	ZE2 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZE3R_COMP	ZE3 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZG1_COMP	ZG1 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZG2_COMP	ZG2 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZG3_COMP	ZG3 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED

Variable	Label
ZG4_COMP	ZG4 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZG5_COMP	ZG5 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZG6_COMP	ZG6 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZG7R_COMP	ZG7R (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZH1_COMP	ZH1 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZH2_COMP	ZH2 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZH3_COMP	ZH3 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZH4_COMP	ZH4 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZH5_COMP	ZH5 (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZB_ABS	Section B Average (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZCD_ABS	Section CD Average (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) STANDARDIZED
ZF_ABS	Section F Average (absolute; higher scores represent greater perceptions of gender inequalities/desire of gender equality among women) EXCLUDES F5 STANDARDIZED
ZCD_COMP	Section CD Standardized Mean Difference Average (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZE_COMP	Section E Standardized Mean Difference Average (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZG_COMP	Section G Standardized Mean Difference Average (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
ZH_COMP	Section H Standardized Mean Difference Average (comparative; higher scores represent greater perceived disadvantage by women over men) STANDARDIZED
FACT_1	Factor 1 Index: Perceptions and direct experience of women in regards to gender barriers and gender roles (smaller values are better) STANDARDIZED
FACT_2	Factor 2 Index: Perceived disadvantage by women in regards to experience and outlook of gender barriers, gender equality, policies and career in STEM (smaller values are better) STANDARDIZED

Variable	Label
GISE_INDEX_RAW	GISE Index STANDARDIZED
MEN_RESPONDENTS	Male Respondent Count per Region
WOMEN_RESPONDENTS	Female Respondent Count per Region

Notes on exceptions

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
Africa	CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	0.486	0.294	0.677		
Africa	CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.	0.371	0.181	0.562		
Africa	CD3 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc).	0.310	0.120	0.500		
Africa	CD4 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their senior classmate, lab-mate or professor (in university laboratory or project group, etc), or senior colleagues or managers at work.	0.249	0.059	0.438		
Africa	CD5 Women in STEM being disadvantaged in accessing research/work equipment or information because she is female.	0.244	0.055	0.434		
Africa	CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.	0.398	0.208	0.589		
Africa	E1 I believe things will turn out fine in the future career for women in STEM.	0.278	0.088	0.468		
Africa	E2R It is crucial to have strong policy support to solve gender inequality in the STEM field. (reverse-coded)	0.155	-0.034	0.344	Result uncertain (0 included in confidence interval)	
Africa	E3R It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field (reverse-coded)	0.180	-0.009	0.369	Result uncertain (0 included in confidence interval)	
Africa	G1 Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work.	0.386	0.195	0.577		

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
Africa	G2 Women equally receive the appraisal or award for the outcome of their project or research or work.	0.408	0.217	0.599		
Africa	G3 The strictness, objectiveness and importance of the research or task outcome are equally respected regardless of the sex/gender of the person in charge.	0.228	0.038	0.417		
Africa	G4 Dealing with funders (those providing funding for research projects or those providing the budget for a work project), in terms of administrative or budget process, is equally fair regardless of the gender/sex of applicant or project leader.	0.212	0.022	0.401		
Africa	G5 Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)	0.415	0.224	0.606		
Africa	G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.	0.458	0.266	0.649		
Africa	G7R Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female (reverse-coded)	- 0.167	-0.356	0.022	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
Africa	H1 On balance, my STEM career has progressed well so far.	0.068	-0.121	0.257	Result uncertain (0 included in confidence interval)	
Africa	H2 I am considered by colleagues to be either a leader in STEM, or on track for leadership.	0.075	-0.114	0.264	Result uncertain (0 included in confidence interval)	
Africa	H3 I have not been personally affected by gender barriers in STEM.	0.377	0.186	0.567		

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
Africa	H4 My family /partner /friends are, on the whole, supportive of my STEM career.	- 0.111	-0.300	0.078	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
Africa	H5 My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment.	0.096	-0.093	0.285	Result uncertain (0 included in confidence interval)	
European Union	CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	0.262	-0.261	0.783	Result uncertain (0 included in confidence interval)	
European Union	CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.	0.214	-0.308	0.734	Result uncertain (0 included in confidence interval)	
European Union	CD3 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc).	0.444	-0.083	0.968	Result uncertain (0 included in confidence interval)	
European Union	CD4 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their senior classmate, lab-mate or professor (in university laboratory or project group, etc), or senior colleagues or managers at work.	0.395	-0.131	0.917	Result uncertain (0 included in confidence interval)	
European Union	CD5 Women in STEM being disadvantaged in accessing research/work equipment or information because she is female.	0.181	-0.341	0.701	Result uncertain (0 included in confidence interval)	
European Union	CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.	0.309	-0.215	0.831	Result uncertain (0 included in confidence interval)	
European Union	E1 I believe things will turn out fine in the future career for women in STEM.	0.475	-0.054	0.999	Result uncertain (0 included in confidence interval)	
European Union	E2R It is crucial to have strong policy support to solve gender inequality in the STEM field. (reverse-coded)	0.295	-0.229	0.816	Result uncertain (0 included in confidence interval)	

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
European Union	E3R It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field (reverse-coded)	0.506	-0.023	1.032	Result uncertain (0 included in confidence interval)	
European Union	G1 Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work.	0.673	0.138	1.203		
European Union	G2 Women equally receive the appraisal or award for the outcome of their project or research or work.	0.598	0.066	1.126		
European Union	G3 The strictness, objectiveness and importance of the research or task outcome are equally respected regardless of the sex/gender of the person in charge.	0.418	-0.108	0.942	Result uncertain (0 included in confidence interval)	
European Union	G4 Dealing with funders (those providing funding for research projects or those providing the budget for a work project), in terms of administrative or budget process, is equally fair regardless of the gender/sex of applicant or project leader.	0.540	0.010	1.067		
European Union	G5 Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)	0.660	0.125	1.190		
European Union	G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.	0.444	-0.083	0.968	Result uncertain (0 included in confidence interval)	
European Union	G7R Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female (reverse-coded)	0.221	-0.301	0.741	Result uncertain (0 included in confidence interval)	
European Union	H1 On balance, my STEM career has progressed well so far.	0.037	-0.483	0.556	Result uncertain (0 included in confidence interval)	

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
European Union	H2 I am considered by colleagues to be either a leader in STEM, or on track for leadership.	-0.408	-0.931	0.118	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
European Union	H3 I have not been personally affected by gender barriers in STEM.	0.822	0.280	1.358		
European Union	H4 My family /partner /friends are, on the whole, supportive of my STEM career.	0.256	-0.267	0.777	Result uncertain (0 included in confidence interval)	
European Union	H5 My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment.	0.567	0.036	1.094		
India	CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	0.505	0.358	0.651		
India	CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.	0.473	0.327	0.619		
India	CD3 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc).	0.348	0.203	0.493		
India	CD4 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their senior classmate, lab-mate or professor (in university laboratory or project group, etc), or senior colleagues or managers at work.	0.335	0.189	0.480		
India	CD5 Women in STEM being disadvantaged in accessing research/work equipment or information because she is female.	0.313	0.168	0.458		
India	CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.	0.301	0.156	0.446		

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
India	E1 I believe things will turn out fine in the future career for women in STEM.	0.415	0.269	0.560		
India	E2R It is crucial to have strong policy support to solve gender inequality in the STEM field. (reverse-coded)	0.118	-0.026	0.263	Result uncertain (0 included in confidence interval)	
India	E3R It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field (reverse-coded)	0.016	-0.129	0.160	Result uncertain (0 included in confidence interval)	
India	G1 Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work.	0.480	0.334	0.626		
India	G2 Women equally receive the appraisal or award for the outcome of their project or research or work.	0.519	0.372	0.665		
India	G3 The strictness, objectiveness and importance of the research or task outcome are equally respected regardless of the sex/gender of the person in charge.	0.412	0.266	0.557		
India	G4 Dealing with funders (those providing funding for research projects or those providing the budget for a work project), in terms of administrative or budget process, is equally fair regardless of the gender/sex of applicant or project leader.	0.395	0.249	0.540		
India	G5 Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)	0.508	0.361	0.654		
India	G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.	0.465	0.318	0.610		

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
India	G7R Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female (reverse-coded)	-0.021	-0.165	0.124	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
India	H1 On balance, my STEM career has progressed well so far.	0.172	0.027	0.316		
India	H2 I am considered by colleagues to be either a leader in STEM, or on track for leadership.	0.147	0.003	0.292		
India	H3 I have not been personally affected by gender barriers in STEM.	0.419	0.273	0.565		
India	H4 My family /partner /friends are, on the whole, supportive of my STEM career.	0.197	0.052	0.342		
India	H5 My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment	0.239	0.094	0.384		
Japan	CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	0.989	0.456	1.519		
Japan	CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.	1.060	0.525	1.592		
Japan	CD3 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc).	0.056	-0.464	0.575	Result uncertain (0 included in confidence interval)	
Japan	CD4 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their senior classmate, lab-mate or professor (in university laboratory or project group, etc), or senior colleagues or managers at work.	0.105	-0.415	0.624	Result uncertain (0 included in confidence interval)	
Japan	CD5 Women in STEM being disadvantaged in accessing research/work equipment or information because she is female.	0.218	-0.303	0.737	Result uncertain (0 included in confidence interval)	

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
Japan	CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.	0.106	-0.414	0.625	Result uncertain (0 included in confidence interval)	
Japan	E1 I believe things will turn out fine in the future career for women in STEM.	0.306	-0.215	0.826	Result uncertain (0 included in confidence interval)	
Japan	E2R It is crucial to have strong policy support to solve gender inequality in the STEM field. (reverse-coded)	0.612	0.087	1.135		
Japan	E3R It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field (reverse-coded)	1.060	0.525	1.592		
Japan	G1 Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work.	0.826	0.297	1.353		
Japan	G2 Women equally receive the appraisal or award for the outcome of their project or research or work.	0.971	0.439	1.501		
Japan	G3 The strictness, objectiveness and importance of the research or task outcome are equally respected regardless of the sex/gender of the person in charge.	0.892	0.361	1.419		
Japan	G4 Dealing with funders (those providing funding for research projects or those providing the budget for a work project), in terms of administrative or budget process, is equally fair regardless of the gender/sex of applicant or project leader.	0.786	0.258	1.312		
Japan	G5 Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)	1.200	0.660	1.735		
Japan	G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.	0.462	-0.061	0.983	Result uncertain (0 included in confidence interval)	

GISE Country/	Statement	d	Lower	Upper	Lower/Upper	Note
Region				••	lest	
Japan	G7R Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female (reverse-coded)	0.285	-0.236	0.805	Result uncertain (0 included in confidence interval)	
Japan	H1 On balance, my STEM career has progressed well so far.	0.335	-0.186	0.855	Result uncertain (0 included in confidence interval)	
Japan	H2 I am considered by colleagues to be either a leader in STEM, or on track for leadership.	0.002	-0.522	0.517	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
Japan	H3 I have not been personally affected by gender barriers in STEM.	1.288	0.746	1.826		
Japan	H4 My family /partner /friends are, on the whole, supportive of my STEM career.	- 0.046	-0.565	0.473	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
Japan	H5 My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment.	0.626	0.100	1.149		
RoW	CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	1.122	0.691	1.547		
RoW	CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.	1.099	0.670	1.524		
RoW	CD3 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc).	0.872	0.454	1.287		

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
Kegion	CD4 Women in STEM being	0.871	0.453	1.286		
	or physical) or treated					
	unfairly by their senior					
RoW	classmate, lab-mate or					
	laboratory or project group					
	etc), or senior colleagues or					
	managers at work.		0.0.50	1 101		
	CD5 Women in STEM being	0.773	0.358	1.184		
RoW	research/work equipment or					
	information because she is					
	female.	0.270	0.122	0 (70	D14	
	in trouble or leaving	0.279	-0.122	0.678	uncertain (0	
RoW	study/work/research project				included in	
	due to her marriage,				confidence	
	E1 I believe things will turn	0.730	0.317	1 140	interval)	
RoW	out fine in the future career	0.750	0.517	1.140		
	for women in STEM.					
RoW	E2R It is crucial to have	0.230	-0.170	0.629	Result	
	gender inequality in the				included in	
	STEM field. (reverse-coded)				confidence	
	F3P It is appropriate to	0.216	0.086	0.716	nterval)	
	introduce a quota system or	0.510	-0.080	0.710	uncertain (0	
RoW	affirmative actions to solve				included in	
	gender inequality in the STEM field (reverse coded)				confidence	
	G1 Women are equally	1.088	0.659	1.512		
	granted or entrusted equal					
RoW	roles for their research or					
	at the laboratory and at work.					
	G2 Women equally receive	0.947	0.525	1.365		
RoW	the appraisal or award for the					
	research or work.					
	G3 The strictness,	0.788	0.373	1.200		
	objectiveness and importance					
RoW	outcome are equally respected					
	regardless of the sex/gender					
	of the person in charge.		0.000	1.01.1		
	G4 Dealing with funders (those providing funding for	0.802	0.386	1.214		
	research projects or those					
	providing the budget for a					
Kow	work project), in terms of administrative or budget					
	process, is equally fair					
	regardless of the gender/sex					
	of applicant or project leader.					

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
RoW	G5 Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)	1.010	0.585	1.430		
RoW	G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.	0.419	0.015	0.820		
RoW	G7R Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female (reverse-coded)	0.449	0.044	0.851		
RoW	H1 On balance, my STEM career has progressed well so far.	0.371	-0.032	0.772	Result uncertain (0 included in confidence interval)	
RoW	H2 I am considered by colleagues to be either a leader in STEM, or on track for leadership.	0.422	0.018	0.824		
RoW	H3 I have not been personally affected by gender barriers in STEM.	1.149	0.717	1.576		
RoW	H4 My family /partner /friends are, on the whole, supportive of my STEM career.	0.082	-0.480	0.317	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
RoW	H5 My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment.	0.410	0.007	0.812		
South America	CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	1.302	0.321	2.269		
South America	CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.	1.317	0.335	2.284		

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
South America	CD3 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc).	1.495	0.500	2.474		
South America	CD4 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their senior classmate, lab-mate or professor (in university laboratory or project group, etc), or senior colleagues or managers at work.	1.439	0.448	2.413		
South America	CD5 Women in STEM being disadvantaged in accessing research/work equipment or information because she is female.	1.061	0.095	2.015		
South America	CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.	0.933	-0.026	1.881	Result uncertain (0 included in confidence interval)	
South America	E1 I believe things will turn out fine in the future career for women in STEM.	0.485	-0.456	1.420	Result uncertain (0 included in confidence interval)	
South America	E2R It is crucial to have strong policy support to solve gender inequality in the STEM field. (reverse-coded)	1.100	0.132	2.056		
South America	E3R It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field (reverse-coded)	0.545	-0.398	1.481	Result uncertain (0 included in confidence interval)	
South America	G1 Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work.	0.614	-0.331	1.552	Result uncertain (0 included in confidence interval)	
South America	G2 Women equally receive the appraisal or award for the outcome of their project or research or work.	1.128	0.158	2.085		
South America	G3 The strictness, objectiveness and importance of the research or task outcome are equally respected regardless of the sex/gender of the person in charge.	0.734	-0.216	1.676	Result uncertain (0 included in confidence interval)	

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
South America	G4 Dealing with funders (those providing funding for research projects or those providing the budget for a work project), in terms of administrative or budget process, is equally fair regardless of the gender/sex of applicant or project leader.	1.000	0.037	1.951		
South America	G5 Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)	1.409	0.420	2.382		
South America	G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.	0.283	-0.653	1.216	Result uncertain (0 included in confidence interval)	
South America	G7R Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female (reverse-coded)	0.122	-1.054	0.812	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
South America	H1 On balance, my STEM career has progressed well so far.	0.631	-0.315	1.569	Result uncertain (0 included in confidence interval)	
South America	H2 I am considered by colleagues to be either a leader in STEM, or on track for leadership.	0.527	-0.415	1.463	Result uncertain (0 included in confidence interval)	
South America	H3 I have not been personally affected by gender barriers in STEM.	0.949	-0.011	1.898	Result uncertain (0 included in confidence interval)	
South America	H4 My family /partner /friends are, on the whole, supportive of my STEM career.	- 0.211	-1.143	0.724	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
South America	H5 My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment.	- 0.249	-1.181	0.686	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
South Korea	CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	1.155	0.646	1.661		
South Korea	CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.	1.358	0.842	1.870		
South Korea	CD3 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc).	1.053	0.546	1.556		
South Korea	CD4 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their senior classmate, lab-mate or professor (in university laboratory or project group, etc), or senior colleagues or managers at work.	1.094	0.587	1.599		
South Korea	CD5 Women in STEM being disadvantaged in accessing research/work equipment or information because she is female.	0.694	0.196	1.190		
South Korea	CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.	1.209	0.697	1.716		
South Korea	E1 I believe things will turn out fine in the future career for women in STEM.	0.584	0.088	1.079		
South Korea	E2R It is crucial to have strong policy support to solve gender inequality in the STEM field. (reverse-coded)	1.273	0.759	1.782		
South Korea	E3R It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field (reverse-coded)	1.037	0.530	1.540		

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
South Korea	G1 Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work.	1.153	0.644	1.659		
South Korea	G2 Women equally receive the appraisal or award for the outcome of their project or research or work.	1.107	0.599	1.612		
South Korea	G3 The strictness, objectiveness and importance of the research or task outcome are equally respected regardless of the sex/gender of the person in charge.	0.973	0.468	1.474		
South Korea	G4 Dealing with funders (those providing funding for research projects or those providing the budget for a work project), in terms of administrative or budget process, is equally fair regardless of the gender/sex of applicant or project leader.	1.074	0.567	1.578		
South Korea	G5 Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)	1.113	0.604	1.618		
South Korea	G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.	1.173	0.663	1.680		
South Korea	G7R Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female (reverse-coded)	0.571	0.075	1.066		
South Korea	H1 On balance, my STEM career has progressed well so far.	0.365	-0.129	0.857	Result uncertain (0 included in confidence interval)	
South Korea	H2 I am considered by colleagues to be either a leader in STEM, or on track for leadership.	0.064	-0.427	0.555	Result uncertain (0 included in confidence interval)	
South Korea	H3 I have not been personally affected by gender barriers in STEM.	1.040	0.534	1.543		

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
South Korea	H4 My family /partner /friends are, on the whole, supportive of my STEM career.	0.117	-0.374	0.609	Result uncertain (0 included in confidence interval)	
South Korea	H5 My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment.	0.205	-0.287	0.696	Result uncertain (0 included in confidence interval)	
Taiwan	CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.	0.850	0.322	1.371		
Taiwan	CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.	0.670	0.151	1.184		
Taiwan	CD3 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc).	0.914	0.383	1.439		
Taiwan	CD4 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their senior classmate, lab-mate or professor (in university laboratory or project group, etc), or senior colleagues or managers at work.	0.801	0.276	1.320		
Taiwan	CD5 Women in STEM being disadvantaged in accessing research/work equipment or information because she is female.	0.885	0.356	1.408		
Taiwan	CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.	1.125	0.580	1.661		
Taiwan	E1 I believe things will turn out fine in the future career for women in STEM.	0.180	-0.324	0.682	Result uncertain (0 included in confidence interval)	
Taiwan	E2R It is crucial to have strong policy support to solve gender inequality in the STEM field. (reverse-coded)	0.388	-0.121	0.893	Result uncertain (0 included in confidence interval)	

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
Taiwan	E3R It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field (reverse-coded)	0.535	0.022	1.044		
Taiwan	G1 Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work.	0.538	0.025	1.047		
Taiwan	G2 Women equally receive the appraisal or award for the outcome of their project or research or work.	0.387	-0.121	0.892	Result uncertain (0 included in confidence interval)	
Taiwan	G3 The strictness, objectiveness and importance of the research or task outcome are equally respected regardless of the sex/gender of the person in charge.	0.350	-0.157	0.855	Result uncertain (0 included in confidence interval)	
Taiwan	G4 Dealing with funders (those providing funding for research projects or those providing the budget for a work project), in terms of administrative or budget process, is equally fair regardless of the gender/sex of applicant or project leader.	0.534	0.021	1.043		
Taiwan	G5 Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)	0.499	-0.013	1.007	Result uncertain (0 included in confidence interval)	
Taiwan	G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.	0.587	0.071	1.097		
Taiwan	G7R Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female (reverse-coded)	0.199	-0.702	0.305	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
Taiwan	H1 On balance, my STEM career has progressed well so far.	0.221	-0.283	0.724	Result uncertain (0 included in confidence interval)	

GISE Country/ Region	Statement	d	Lower	Upper	Lower/Upper Test	Note
Taiwan	H2 I am considered by colleagues to be either a leader in STEM, or on track for leadership.	- 0.197	-0.699	0.307	Result uncertain (0 included in confidence interval)	Recoded as 0 (sample results suggest that men perceive a disadvantage over women)
Taiwan	H3 I have not been personally affected by gender barriers in STEM.	0.501	-0.011	1.009	Result uncertain (0 included in confidence interval)	
Taiwan	H4 My family /partner /friends are, on the whole, supportive of my STEM career.	0.044	-0.458	0.546	Result uncertain (0 included in confidence interval)	
Taiwan	H5 My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment.	0.275	-0.230	0.779	Result uncertain (0 included in confidence interval)	

-

Appendix D: Further notes on Statistical Results

Statements in full

For ease of reference, the full list of statements is included here:

Statement	Full Statements		
B1	B1 Girls and boys are equally encouraged to choose any major/field of study in STEM during their education period.		
B2	B2 Female students in STEM receive equally fair assessments and appraisals for their work, task, or project results, compared to their male counterparts in the same programs and levels.		
B3	B3 Women in STEM receive equal work distribution and work appraisals compared to men of the same qualifications and level.		
B4	B4 It is equally difficult for a woman as for a man to get a job in the STEM field with the same qualifications.		
B5	B5 Being promoted or becoming a tenured professor or a principal investigator is equally difficult for women in STEM as for men in STEM.		
B6	B6 Women in STEM generally receive equal pay for equal work, compared with their equally- qualified male colleagues.		
CD1	CD1 Women in STEM being disadvantaged in receiving promotions, grade appraisal, research funds or scholarships because she is female.		
CD2	CD2 Women in STEM being disadvantaged in participating or leading a research/work project or team because she is female.		
CD3	CD3 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their colleagues/peers (in class, laboratory, team, at work, etc).		
CD4	CD4 Women in STEM being sexually harassed (linguistical or physical) or treated unfairly by their senior classmate, lab-mate or professor (in university laboratory or project group, etc), or senior colleagues or managers at work.		
CD5	CD5 Women in STEM being disadvantaged in accessing research/work equipment or information because she is female.		
CD6	CD6 Women in STEM being in trouble or leaving study/work/research project due to her marriage, pregnancy or childcare.		
E1	E1 I believe things will turn out fine in the future career for women in STEM.		
E2	E2 It is crucial to have strong policy support to solve gender inequality in the STEM field.		
E3	E3 It is appropriate to introduce a quota system or affirmative actions to solve gender inequality in the STEM field		
F1	F1 In a relative sense, men are rational while women are emotional, and thus they ought to complement each other by carrying out roles that are appropriate for their gender.		
F2	F2 Primary breadwinners (who take care of financial obligations) of households should be men.		
F3	F3 Women are born to be, or naturally able to care for children in a way that men are just not as capable.		

Statement	Full Statements		
F4	F4 In order to maintain the order and peace of a family, the husband should have greater power and authority than the wife.		
F5	F5 I believe gender equality will be fully achieved only if women are given equal opportunities as men.		
G1	G1 Women are equally granted or entrusted equal roles for their research or project or work performance at the laboratory and at work.		
G2	G2 Women equally receive the appraisal or award for the outcome of their project or research or work.		
G3	G3 The strictness, objectiveness and importance of the research or task outcome are equally respected regardless of the sex/gender of the person in charge.		
G4	G4 Dealing with funders (those providing funding for research projects or those providing the budget for a work project), in terms of administrative or budget process, is equally fair regardless of the gender/sex of applicant or project leader.		
G5	G5 Women receive the same social evaluation and respect as men in their roles as scientists or engineers (by their colleagues, professor, managers, funding donors, academic association, scientific society, professional institution, etc.)		
G6	G6 Marriage, pregnancy or childcare have the same effect on scientist/engineer regardless of their gender/sex on their study, research or work performance.		
G7	G7 Female students in STEM are intimidated in the laboratory or in classes or in the workplace because they are female.		
H1	H1 On balance, my STEM career has progressed well so far.		
H2	H2 I am considered by colleagues to be either a leader in STEM, or on track for leadership.		
НЗ	H3 I have not been personally affected by gender barriers in STEM.		
H4	H4 My family /partner /friends are, on the whole, supportive of my STEM career.		
H5	H5 My current colleagues, managers, professors, are as supportive of me and my STEM career as of others in the same environment.		

STEM Clusters by Letter Codes

See <u>Table: STEM specializations and STEM Cluster for GISE</u> in the main body of the 2022 GISE report for the list of STEM sectors or specializations in the order as given in the UN SAGA STEM classification. The following list is the same list but in order of STEM Cluster Letter Code.

Letter Code	STEM Cluster Name	Number Code	STEM Specialisms
a	Agricultural, Animal	26	Agriculture, forestry, and fisheries, (including agricultural engineering)
a	Agricultural, Animal	27	Animal and dairy science (including veterinary)
а	Agricultural, Animal	28	Agricultural biotechnology
а	Agricultural, Animal	29	Other agricultural sciences
b	Engineering	9	Civil engineering (including construction)
b	Engineering	10	Electrical engineering, electronic engineering, information engineering, telecommunications
b	Engineering	11	Mechanical engineering, (including rail, aerospace, industrial)
b	Engineering	12	Chemical engineering
b	Engineering	13	Materials engineering
b	Engineering	14	Medical engineering
b	Engineering	15	Environmental engineering
d	Maths/Numerical Sciences	1	Mathematics and statistics
d	Maths/Numerical Sciences	2	Computer and information sciences (including software design & development)
d	Maths/Numerical Sciences	3	Other numerical sciences
с	Medicine and Health	21	Basic medicine, pharmacy
с	Medicine and Health	22	Clinical medicine
с	Medicine and Health	23	Health sciences, nursing, healthcare
с	Medicine and Health	24	Medical biotechnology
с	Medicine and Health	25	Other medical science
e	Natural Sciences	5	Chemical sciences
e	Natural Sciences	7	Biological sciences
e	Natural Sciences	8	Other natural sciences
e	Natural Sciences	4	Physical sciences
e	Natural Sciences	6	Earth and related environmental sciences
f	Other Tech and Architectural	16	Environmental biotechnology
f	Other Tech and Architectural	17	Industrial biotechnology
f	Other Tech and Architectural	18	Nano-technology
f	Other Tech and Architectural	19	Architecture and town planning
f	Other Tech and Architectural	20	Other engineering and technology
f	Other Tech and Architectural	33	Other field of STEM
g	Social Sciences, Psychology, Economics	30	Psychology and cognitive sciences
g	Social Sciences, Psychology, Economics	31	Economics and business science
g	Social Sciences, Psychology, Economics	32	Other social sciences (including recruitment in STEM, education, research administration)
-	Not assigned to any STEM Cluster	34	Other field not in STEM

List of respondent countries

Country	Responses
Angola	1
Argentina	2
Australia	4
Austria	1
Belgium	1
Belize	1
Benin	6
Bhutan	2
Bolivia	14
Burkina Faso	3
Burundi	5
Cambodia	1
Cameroon	221
Canada	4
Central African Republic	2
Chad	6
China	2
Colombia	1
Comoros	1
Congo, Democratic Republic of the	4
Congo, Republic of the	17
Costa Rica	2
Cote d'Ivoire	14
Ecuador	1
Egypt	3
Ethiopia	13
France	13
Gabon	5
Gambia, The	2
Germany	16
Ghana	40
Guyana	1
Honduras	1
India	902
Indonesia	1
Ireland	2
Italy	4
Japan	146
Kenva	19
Korea, South	156
Madagascar	1
Mali	3
Mauritania	1
Mexico	16
Mongolia	4
Morocco	1
Mozambique	2
Nepal	7
Netherlands	1
r temenanab	1

Country	Responses
New Zealand	43
Niger	3
Nigeria	10
Norway	1
Oman	3
Peru	1
Philippines	1
Portugal	1
Qatar	5
Russia	2
Saudi Arabia	3
Senegal	11
Sierra Leone	2
Singapore	2
Somalia	1
South Africa	4
South Sudan	3
Spain	6
Sudan	4
Sweden	2
Switzerland	1
Taiwan	62
Tanzania	4
Togo	1
Tunisia	18
Uganda	1
United Arab Emirates	5
United Kingdom	12
United States	13
Zambia	4

NB. The above numbers are for the responses included in the initial analyses.

Of the late responses included in the secondary analysis: 509 were from Cameroon, another 4 were from other countries in Africa, and a final 7 were from outside Africa.